NAVAL POSTGRADUATE SCHOOL
Monterey, California

ADVANCED NAVAL SURFACE FIRE SUPPORT
WEAPON EMPLOYMENT AGAINST MOBILE TARGETS
by
Hung B. Le
December 1999
Thesis Advisor: Arnold H. Buss
Second Reader: Douglas J. MacKinnon

Approved for public release; digtribution is unlimited.

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1999 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ADVANCED NAVAL SURFACE FIRE SUPPORT WEAPON EMPLOYMENT AGAINST
MOBILE TARGETS

6. AUTHOR(S)
Le, Hung B.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road

Laurel, Maryland 20723-6099

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b.DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS), a mission area that is undergoing rapid
evolution. The Navy’'s ability to effectively provide sea-based fire support to ground forces is profoundly challenged by mobile and
reduced dwell time targets. Furthermore, longer range enemy weapon systems, which must be destroyed at greater ranges prior to
their engagement of friendly forces, will make NSFS timeliness a difficult proposition. To overcome these threat trends, the United
States is developing sophisticated weapons that promise increased lethality, greater ranges and improved responsiveness. However,
the development of robust firing policies to ensure effective weapon utilization has lagged behind the hardware. Existing computer
models and simulations have not addressed the question of NSFS gun/missile firing policy. This thesis develops the Naval Surface
Fire Support Simulation (NSFSSim) model, a discrete-event simulation that serves as an analysis tool to determine favorable firing
policies for future NSFS gun and missile systems in support of determining the appropriate NSFS weapons mix. NSFSSim models
ships and their associated NSFS weapons in counterbattery and call fire missions against mobile, reduced dwell time targets.
Exploratory analysis using NSFSSim yields useful insights, and the component-based architecture underlying the model provides
significant flexibility for further analysis.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Discrete-Event Simulation, Firing Policy, Java, Modeling and Simulation, Naval Surface Fire 103

Support 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited.

ADVANCED NAVAL SURFACE FIRE SUPPORT
WEAPON EMPLOYMENT AGAINST MOBILE TARGETS

Hung B. Le
Lieutenant, United States Navy
B.S, United States Naval Academy, 1992

Submitted in partid fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 1999

Author:

HungB. Le

Approved by:

Arnold H. Buss, Thess Advisor

Douglas J. MacKinnon, Second Reader

Richard E. Rosenthd, Chairman
Department of Operations Research

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Key threat trends have identified shortfdls in Nava Surface Fire Support (NSFS),
a misson aea that is undergoing rapid evolution. The Navy's adility to effectivdy
provide sea-based fire support to ground forces is profoundly chalenged by mobile and
reduced dwell time targets. Furthermore, longer range enemy wegpon systems, which
must be destroyed at greater ranges prior to ther engagement of friendly forces, will
make NSFS timdiness a difficult propostion. To overcome these threat trends, the
United States is developing sophigticated wegpons that promise increased |ethdity,
greater ranges and improved responsveness. However, the development of robust firing
policies to ensure effective wegpon utilization has lagged behind the hardware. Existing
computer models and smulations have not addressed the question of NSFS gun/missile
firing policy. This thess devdops the Navad Surface Fire Support Simulation
(NSFSSm) modd, a discrete-event smulation that serves as an andyss tool to
determine favorable firing policies for future NSFS gun and missle sysems in support of
determining the appropriate NSFS wegpons mix. NSFSSm modes ships and their
asociated NSFS weapons in counterbattery and cdl fire missons agangt mobile,
reduced dwell time targets. Exploratory andyss usng NSFSSm yieds useful indghts,
and the component-based architecture underlying the modd provides ggnificant

flexibility for further analyss.

DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for dl cases of interet. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic

erors, they cannot be consdered vdidated. Any gpplication of these programs without

additiond verification is at therisk of the user.

Vi

TABLE OF CONTENTS

. INTRODUCTION ...ttt sttt eensesaessessesnessesneenens 1
A. NSFSWEAPONS...... .ottt e et e e aesaesaesresreeneeneennas 4
B. MOTIVATION ...ttt ettt sb b b sne e e nneas 6
C. BACKGROUNDciiiiieiiesiesie sttt sae sttt se e e saessestessesbessessesseeneenes 9
D. THESISSTRUCTURE.......ccciii ettt sttt 15

LT, INSFSSIM .ottt sttt e bbb e b ae s 17
A. METHODOLOGYccooiiitiriieieiesiesiesiestesieseseessessessessessessessesseessesssssessessessessesseens 17
B. MODELING PRINCIPLES........cocotitiiiicieiere et s 19

1. Object-Oriented Programimingccccceeeerieesieenesiesseesesseeseesseseesseessesssssseessens 19
2. The LiStener Pattern.........cccoooiiiiiniiinieiesie st 21
3. Third Party COMPONENTS.......coiiiiiriieieeiesee et sre e ses 23
4. Manager COMPONENTS........coiieirireerieesie et es e sre s reen e e e sre e 24
C. NSFSSIM STRUCTURE........ccciiiiinirieieie sttt s 24
D. NSFSSHIPS......co ettt ettt et st s resnessenneeneens 27
E. NSFSSHIPMANAGERS.........coo ottt 28
F. NSFSMISSION SCHEDULING......ccciiiiiiiiierese st 30
1. Counterbattery IMISSIONS......ccccciiieiiieiieiiecstee e e e e e sre e enre e 31
2. Cal FIr€ MISSIONS.....coitiiiiitieiieeiesteesie st stee et see e e ae e sbestesseessesnsesneensens 32
G. ARTILLERY BATTERIES.......cot ittt 33
H. ARTILLERY BATTERY MANAGERSccoot it 36
. NSFSWEAPONS........o oottt e e tesae st sressesneeneeneens 37
J. NSFSREFEREE AND WEAPON TARGET MEDIATORS.........ccccccevieeireeenens 39

[T, ANALYSISUSING NSFSSIM ..ot 45
A. MEASURES OF PERFORMANCE.........cceitiieriiresese st see e s se e 45
B. MEASURE OF EFFECTIVENESS SELECTION.......ccccviiiiiiieniereeeesee e 46
C. SCENARIO DESCRIPTION.....cotitiiiiirieiesie ettt s e 47
D. FIRING POLICY INVESTIGATIONcooiiiieiese et 48
E. VARYING ERGM DISPENSE DIAMETERccooooiiiiieieeeerie e 57

V. CONCLUSIONSAND RECOMMENDATIONS.......ccoirieieieniene e 59
A. THE NEED FOR ANALYSIS... oot s 59
B. DEVELOPMENT OF NSFSSIM ...cciiiiiiieieriesiese et sse e ssesnens 59
C. RECOMMENDATIONS FOR FURTHER ANALYSIS....ccooeiieereeeeee e 60

APPENDIX A: DATA STRUCTURESIN NSFSSIMcccoooiiriinienenenie e 63

APPENDIX B: CREATING ANIMATION IN NSFSSIMocoiieiereneceeeeeeene 75

LIST OF REFERENCEScoi ettt ettt 83

INITIAL DISTRIBUTION LIST ..ot 85

vii

THISPAGE INTENTIONALLY LEFT BLANK

viii

LIST OF FIGURES

Figure 1. Editing Input FIleSiN NSFSSIM ..o 15
Figure 2. NSFSSIM's ANiMation MOCE...........cceeiuiiieiieseece e 25
Figure 3. NSFSShip Component Hierarchy...........ccocooeeeiiriiniineeieeeeees e 27
Figure 4. Specifying aFiring POIICYcooiriiiiiiieneee e 29
Figure 5. The Logic of Counterbattery Mission Generation............cceceveereeceeseerensennees 32
Figure 6. ArtilleryBattery Component Hierarchy..........cccecvevieeieniiie s 34
Figure 7. NSFSWeaponMover Component Hierarchyccoceeeeieneneneneneseseeene 38
Figure 8. Typical “Lazy W” Battery FOrmation...........cccccvevueeeeneesenieseese e seesee e 41
Figure 9. WeaponTargetMediator LOGQICc.eceeiuieiieiie ettt 42
Figure 10. Baseline Histogram of Artillery Rounds Fired...........ccoooeviiieieninncnnnnene 49
Figure 11. NSFSSIM'S TEXt EQITON......cccuiiiiiieieieriese e 50
Figure 12. Firing Policy GGGGGMMMc.ccoeiiiiiiiesieesie et see e 51
Figure 13. Histogram for GGGGGMMM Firing POlICYccccoveeiiiinieieeeseeieeee 52
Figure 14. Firing Policy MMMGGGGEGc.cooeiieiiiieriisiesieeeeeeee e 53
Figure 15. Histogram for MMMGGGGG Firing POlICYcccceveeveeeeriereceeeeie e 54
Figure 16. Firing POlicy MMGGGEGcoiiiiiiiiie ittt st 55
Figure 17. Histogram for MMGGGG Firing POlICY........c.ccoovriiiriieieeere e 56
Figure 18. Effect of Varying ERGM Dispense DIiametercccccceveeveereeieeseesensnenens 57

THISPAGE INTENTIONALLY LEFT BLANK

LIST OF SYMBOLS, ACRONYMSAND/OR ABBREVIATIONS

AOA
ASM
ATACMS
CZ

cH

CEP
ELAN
ERGM
FFTS

FO

GPS

GUI

10C
ITEM
JHU/APL
LASM
MEF

MK
MOE
MOP
MRS
MVC
NGFS
NPS
NSFS
NSFSSm
NTACMS
OMFTS
OOP
OPNAV
PK

RSTA
SACC
SAM
SCLAWS
SM

SPA
TACAIR
TAFSM
TBM
TLAM
TLE
TOF

Andyssof Alternatives
Anti-Ship Missle

Army Tectical Missle System
Command and Control

Command, Control, Communications, Computers, and Intelligence

Circular Error Probable

Enhanced Lanchester

Extended Range Guided Munition
Forward...From The Sea

Forward Observer

Globa Postioning System

Graphica User Interface

Initial Operationa Capability
Integrated Theater Engagement Model

Johns Hopkins University, Applied Physics Laboratory

Land Attack Standard Missile

Marine Expeditionary Force

Mark

Measure of Effectiveness

Measure of Performance

Multiple Rounds Smultaneous Impact
Model-View-Controller

Nava Gun Fire Support

Naval Postgraduate School

Nava Surface Fire Support

Naval Surface Fire Support Simulation
Navy Tacticd Missle Sysem
Operational Maneuver From The Sea
Object-Oriented Programming
Office of the Chief of Nava Operaions
Probability of Kill

Reconnai ssance/Surveillance/ Target Acquisition
Supporting Arms Coordination Center
Surfaceto Air Missle

Surface Combatant Land Attack Weapons Study
Standard Missle

Sdf-Propdled Artillery

Tacticd Aircraft

Target Acquisition Fire Support Moddl
Theater Bdlidic Missle

Tomahawk Land Attack Missile

Target Location Error

Time of Hight

TPM Technical Performance Measure
TTP Tactics, Techniques, and Procedures
TTWS Tactica Tomahawk Weapon System
VLS Vertica Launching System

Xii

EXECUTIVE SUMMARY

Key threat trends have identified shortfdls in Nava Surface Fire Support (NSFS),
a misson aea tha is undergoing repid evolution. The Navy's ability to effectivey
provide sea-based fire support to ground forces is profoundly chalenged by mohbile and
short dwell time targets Furthermore, longer range enemy wegpon systems, which must
be destroyed a greater ranges prior to their engagement of friendly forces, will make
NSFS timdiness a difficult propostion. To overcome these threet trends, the United
States is developing sophisticated wegpons that promise increased lethdity, greater
ranges and improved responsveness. However, the development of robust firing policies
to ensure effective weagpon utilization has lagged behind the hardware. The fiscd redity
of budgetary congraints and the chdlenges posed by ever-increasingly cgpable and
mobile enemy weagpon sysems highlight the need for sound andyss in the area of
tactical employment of precision wegpons.

Existing computer models and samulations have not addressed the question of
NSFS gun/missile firing policies. Some studies conducted to address other NSFS issues
have successfully used a consortium-of-models approach. However, due to the rigid
desgn of these smulation modds, mgor modification to exising code is required to
enable the modeds to work together. To overcome these difficulties, this thess developed
the Nava Surface Fire Support Simulation (NSFSSim) model, a component-based,
discrete-event smulation that sarves as an andlyss tool to determine favorable firing
policies for future NSFS gun and missle sysems. While no single modd can properly
andyze dl aspects of the complex problem of sea-based fire support, it can yield useful

ingghtsto asmdl portion of the larger problem.
iii

NSFSSm runs on any hardware platform and can be easly modified to support
additiond feastures and greater resolution. This Smulation moded combines newly
developed components with a few previoudy developed components. A graphicd user
interface was built to enable rgpid modification of input data, execution of Imulation
runs with different views, and the immediate display of output that lends itsdf to andyss
using operations research methods. Together, these components provide a useful andysis
tool that is dynamic, flexible, and component based. The notiond scenario presented in
this thess is desgned to demondrate the type of andyss that can be conducted using
NSFSSm.

NSFSSm was created as a firda sep toward the god of providing military
plannes and andysts with a component-based smulaion tool that can ad in the
formulation of integrated NSFS gun and missle firing policies agangt mobilerelocatable
targets. Its uses extend beyond the andyss of firing sequences and dispense diameters
undertaken thus far. The modd can be used to investigate optima artillery battery tactics
againgt advanced NSFS weapons as well as the impact of response times, target location
errors, and weapon precison limits on the success of NSFS missons. Component
modifications and additions can be made easlly to cresate future versons of NSFSSim that

are more complex and robugt.

Xiv

ACKNOWLEDGMENT

| would like to thank Professor Arnold H. Buss for his outstanding guidance,
assistance, and support throughout the thesis process. | aso wish to thank Jack Keane of
the Joint Warfare Analyss Depatment (WAD) at JHU/APL for his dedicated efforts as
thess tour liason a& APL. | would dso like to express my apprecigtion for the
encouragement and indght given by the andysts of JWAD’s Joint Thester Andyss
Group¥sin particular, Ted Smyth, Richard Miller, and Alan Zimm. Furthermore, | want
to thank Russ Gingras and Steve Biemer who provided for and sponsored me on my
experience tour.

Last, but never least, | want to thank my wife Lyn, whose patience and

undergtanding helped me through two demanding years at NPS.

THISPAGE INTENTIONALLY LEFT BLANK

XVi

[. INTRODUCTION

The end of the Cold War has redefined the environment in which the Navy must
operate. Amidst the chalenges presented by increasingly scarce resources, the Navy has
undergone a gradua metamorphosis from a “blue water” force developed for open-ocean
engagements againg the former Soviet Union to a littord force that faces many potentia
adversaries. Today’s Navy primarily projects power from the sea as an integrated part of
Joint strike operations and in support of the Joint land battle. The experiences of Desert
Shidd/Desart Storm highlight the emerging prominence of nava support of ground
forces.

The Navy’'s Forward...From The Sea (FFTS) and the Marine Corps Operational
Maneuver From The Sea (OMFTS), the Services authoritative <tatements on
warfighting, envison an expanded role for navad fire support in future operaions.
Smilaly, Joint Vision 2010 provides an operaiond template for future Joint warfighting
that focuses on leveraging technology to achieve such concepts as precison engagement
and dominant maneuver. Evolving warfighting concepts as wel as advancements in
weapons technologies have atered perceptions about and broadened the potentia
requirements for searbased fire support. OMFTS, in particular, proposes dynamic
drategies and tactics amed a decidve action, mobility, surprise, and fires to enable
maneuvers tha exploit enemy wesknesses. Effective nava fire support is paramount if
OMFTSisto be redized.

Higoricdly, navd firepower from surface combatants has contributed to the

success of nearly al military operations in or near the littoras. Traditiond Nava Gun

Fire Support (NGFS) has encompassed dl nava guns from 3inch to 16-inch to support
amphibious operations. Today’s modern warships have ether one or two Mark (MK) 45
5-inch/54-caiber guns cgpable of firing baligic rounds to a maximum range of
goproximately thirteen nauticd miles (nm). When precison fires are required, however,
the maximum effective range becomes grealy reduced. Moreover, fire support planning
and a plotting team using voice-reporting procedures is dill accomplishing coordination
on the most moden cruisars and desroyers. Similarly, the Supporting Arms
Coordination Center (SACC) on the newest amphibious assault ship ill employs the
manua practices and procedures reminiscent of World War 1l fire support planning.
Clearly, current wegpon ranges, organization, and planning and coordination procedures
are inadequate to meet the requirements of 21% century warfighting concepts.

The precepts of attrition warfare are being replaced by the Marine Corps concept
of manewe wafare, a paradigm which “envisons a fager-paced, longer-range insertion
of troops with greater reliance on nava fire support and logigics” (Allen, 1996) No
longer viewed as a gun preparing a hostile beachhead for amphibious operations, offshore
fire support in the near future will be provided by precisonguided munitions and tecticd
land attack missles. These advanced wegpons will be capable of destroying targets a
rangesin excess of 100 nm.

In recognition of these changes and the expanded role of surface combatants in
support of the Joint land baitle, the Navy has updated its terminology, replacing NGFS
with Naval Surface Fire Support (NSFS). Joint Pub 1-02, Department of Defense

Dictionary of Military and Associated Terms defines NSFS as “fires provided by Navy

asurface gun, missile, and dectronic warfare systems in support of a unit or units tasked
with achieving the Joint commander’ s objective.” (OCJICS, 1994)

Today NSFS is 4ill limited in duration and is used primaily to provide short-
range fire support until organic atillery assets are edtablished ashore. Due to weapons
limitations, fires are directed mainly at fixed defenses. In the near future, however, NSFS
will be provided at greater ranges and for extended durations. In the early stages of the
battle, sea-based fire support will serve as a surrogate for organic atillery, thereby
enabling ground forces to maneuver agang the enemy. Later in the batle, NSFS will
complement tactica arcraft (TACAIR) and organic atillery ashore. Currently, logigtics
support and command and control (C?) functions shift from sea to shore following the
post-assault phase of an amphibious operation. In the future it is likey that these
functions will remain offshore for as long as the Stuation permits. Advanced capability
NSFS wegpons are one of the primary enabling factors of this new operational concept.

These new wegpons will include the Extended Range Guided Munition (ERGM)
that will be fired from an improved 5-inch gun, a tacticaly employed Tomahawk missle,
and a responsve land attack misdle that uses an exiging missle arframe. Each missle
will compete for space indgde shipboard MK 41 Vertica Launching Systems (VLS). All
of these advanced weagpons will utilize Globd Pogtioning Sysem (GPS) satellites for
guidance to their respective am points and promise greater lethdity, range, and improved
responsiveness.

Severd key threat trends have generated te need for such sophisticated weapons.
Chief among these trends are the improved mohility of atillery, thester balidic missles
(TBMs), and surface to air missiles (SAMs) and the use of shorter dwell times. Improved

3

mobility and shorter dwel times equate to a reduced window of opportunity for fire
support wegpons to detect, acquire, and effectively engage enemy targets. The prospect
of destroying such targets becomes especidly remote because wegpon times of flight
(TOF) increase as a result of extended ranges. However, longer-range enemy wegpon
gystems induce these extended ranges because the weapon systems must be destroyed
prior to ther engagement of friendly forces Additiondly, improved enemy deception
cgpabiliies will adversdy affect friendly reconnaissance/survelllanceltarget acquisition
(RSTA) sensor performance.

Nava surface-launched wegpon systems are being developed to provide Aegis
cruisers and destroyers the expanded capability of rgpidly and precisdy placing ordnance
on target in support of the Joint land batle as well as expeditionary operations in the
littords. While wegpons development has proceeded with the momentum of adequate
funding, wegpons sysems integration and tacticd condderdtions reman a the

conceptua stages.

A. NSFSWEAPONS

The NSFS Program Office (PMS-429) of the Naval Sea Systems Command is
devedoping the Ex-171 ERGM that will be fired from a modified 5-inch/62-cdiber gun.
The ERGM, which advertises a maximum range of 63 nm, is scheduled to be deployed
on DDG 81 and later Arleigh Burke class destroyers in 2002. Subsequently, this gun
system and the capability to fire ERGM will be backfitted on VLS-capable Ticonderoga
dass cruisars, specificdly CG 52 and laer ships. This enhanced munition will dispense

bomblets usng a variable dispense diameter festure. With this most important capability,

bomblet patterns can be concentrated to maximize lethdity againg a dngle target or
broadened to dlow the possibility of multiple misson kills againgt dispersed targets.

Tomahawk Land Attack Missles (TLAMs) have dready proved ther
effectiveness in drike missons agang fixed defenses. NSFS integration of this potent
wegpon system involves the development of tacticaly tasked Tomahawk variants that are
capable of in-flight retargeting in response to fire misson adjusments. The Basdine 1V
Tecticd Tomahawk Wegpon System (TTWS) will enable sea-based land attack ranges of
200 to 1,600 nm. The mgor operationd requirements of TTWS are the following (JCM-

2237, 1998):

Increese system flexibility to support recapt of misslemisson
communications and enroute retargeting of the missle to dternae

preplanned outcome or emergent target

Reduce sysem response time to adlow engagement of emergent and

relocatable targets

Improve lethdity againgt awider target set

Retain dl Basdine 1l system capabilities (unless specificaly exempted)

Required, but 4ill unfunded, is a more responsve land atack missle adapted
from an exiding missle arframe. Two major candidate arframes exis. The fird is the
Standard Missle (SM-2), a capable but aging ar defense missile employed on many
surface combatants. In its modified NSFS role, the Land Attack Standard Missle

(LASM) would carry a 120-pound improved unitary warhead and possess a maximum

range of 120 nm. The second candidate missile is the Army Tacticd Missle Sysem
(ATACMYS). The Navy verson of this missle sysem, Navy Tacticd Missle Sysem
(NTACMS), would cary a larger warhead weighing 390 pounds and extend the
maximum range to 150 nm.

In A National Security Strategy for a New Century, Presdent William J. Clinton
dates that “the military chdlenges of the 21% century, coupled with the aging of key
elements of the U.S. force dructure, require a fundamentd transformation of our forces.”
One example of this transformation is the devdlopment of DD 21, the 21% Century Land
Attack Dedtroyer, which has an Initid Operational Capability (I0OC) date of 2008.
Desgned to replace Oliver Hazard Perry FFG 7 class frigates and Spruance DD 963
cdass destroyers, DD 21 will be a multi-misson plaform. Its most potent misson,
however, will be land attack warfare. The twenty-three planned DD 21 class destroyers
will possess @ther a tranable or vertica 155-millimeter (mm) gun capable of firing 155
mm howitzers and larger versons of ERGM to ranges in excess of 100 nm. DD 21 will
enjoy larger magazine capecities than today’s Aegis cruisars and destroyers, making it
even more formidable as an NSFS platfform. It will dso possess TTWS and a

complementary land attack missile.
B. MOTIVATION

Advanced NSFS wegpons will bring vast performance improvements over the
current NSFS wegpon, the MK 45 gun. Such technological sophigtication comes with a
heavy cogt pendty, however. These weapons will be much more expensive than today’s

5-inch bdligic ammunition. Cost concerns over ERGM have dready surfaced. Recently

the Navy appointed an outsde assessment team a the Massachusetts Indtitute of
Technology's Lincoln Lab to examine the program. “Some Navy officids are concerned
that the sygem’'s complexity may increase its cos and dday deployment, currently
scheduled for 2002 (Holzer, 1999) Moreover, ship magazines will accommodate fewer
of these larger munitions. Larger costs per wesgpon, fewer weapons per surface
combatant, and the dedre for efficiency motivate an invedtigation into optimdity
considerations for these advanced weapons.

The expectations for NSFS are a an dl-time high. Sound quditative and
quantitative analyses must be conducted to support efficient acquisition decisons that
meet emerging NSFS requirements Smilaly, andyses must be peformed tha
investigate procedures and doctrine for the effective tacticd employment of these
advanced NSFS wegpons. Existing computer models and smulations have not addressed
the question of NSFS gurymissle firing policies. While no one-modd approach can
properly andyze dl aspects of the complex problem of sea-based fire support, a sngle
model done can yidd useful indghtsto asmdl portion of the larger problem.

The previous section suggested problems that mobile, short dwel time targets
pose for NSFS weapons. To appreciate these problems, consider enemy weapon systems
such as atillery guns and howitzerss Most modern sdf-propdled atillery (SPA) and
towed artillery systems are capable of cross-country speeds of 40 or more kilometers per
hour (km/hr). Recdl that advanced NSFS wesgpons such as ERGM and LASM fly to an
am point believed to be the location of an enemy target. Because the am point is
determined prior to wegpon launch and remains fixed, any movement by the target away
from the am point minimizes the likdihood of the wegpon's impacting the target. A

7

Mach 2.0 LASM fired from a surface combatant stationed 25 nm from the enemy coadt,
agang a moving atillery unit that is 25 nm inland, surdy will miss Traveling a Speeds
below Mach 1.0, an ERGM fired under the same conditions has no chance of success.

Redidicdly, an NSFS wegpon can achieve a misson kill agang a mobile target
only during the target’s dwell time, or the time tha it remains Stationary a a geographic
location. The window of opportunity for achieving this misson kill likdy is narrow for
atillery sysems. Conceivably, a SPA gun could teke as little as 90 seconds to emplace
or make preparations to fire its gun, could fire sx rounds a the rate of six rounds per
minute for a tota of one minute, and take another 30 seconds to dsplace before moving
to a new location. This tactic of firing rounds and then moving away from an am point
in avoidance of counterfire is commonly caled “shoot and scoot.” (Zimm, 1996) This
paticular atillery gun, then, would present a window of opportunity of three minutes for
an incoming NSFS missle or munition that must travedl upwards of 50 nm prior to
impacting the am point.

This thess will devdop the Nava Surface Fire Support Smulation (NSFSSim)
modd, a discrete-event smulaion mode thet can provide useful indghts into the
problem of NSFS gur/missle firing policies agang rdocatable targets. The smulation

modd will be used to explore the following questions:

In the tacticd employment of ERGM and a land attack missile, what firing
policies optimize misson effectiveness agang mobile and short dwell
time targets such as SPA and towed atillery batteries that utilize “shoot
and scoot” tactics? Spedificdly, what gurymissle firing sequence(s)

minimize the number of rounds fired by agiven mix of atillery baiteries?
8

For a given mix of SPA and towed artillery batteries, is there an optimd

ERGM dispense diameter (20 meters (m), 40 m, 60 m, 80 m, 100 m)?

NSFSSm is smple and does not profess to offer any definitive results. However,
the modd does provide some useful insights into the questions listed above. Combat is a
complex and uncertain propodtion. In this case, the uncertainty is compounded by the
incluson of future wegpons sysems, whose technicd performance measures (TPM) are
dill evolving. While these unknown parameters introduce uncertainties in any modd,
they offer an open invitaion for the goplication of Smulation modding. An andyss

surrounding the questions posed in the previous paragraph is presented in Chapter 111.

C. BACKGROUND

Studies have been peformed to invedigate the expanded role of surface
combatants in support of land attack warfare. (Zimm, 1998) Anadyses of dternatives
have been conducted to evauate the effectiveness of various land attack gun systems.
(Zimm, 1999) Similarly, studies have been performed in efforts to decide which NSFS
missiles should be ingtdled on the Navy's newest surface combatants. (Schweizer, 1999)
Spreadsheet optimization to determine optima ship ordnance loadouts for NSFS missions
has dso been peformed. (Chien, 1997) The impetus for these studies has been the
evolving reaionship of NSFS to the ground war as wel as emerging wegpons
technologies. Prior to these andyses, the Office of the Chief of Naval Operations
(OPNAV) Strike and Fire Support Branch of the Surface Warfare Divison (N863F),

aong with the Amphibious Branch of the Expeditionary Warfare Divison (N853), tasked

the Johns Hopkins University, Applied Physics Laboratory (JHU/APL) with developing a
Road Map for NSFS. (Allen, 1996)

This Road Map was “defined as a time-phased summary of systems, concepts and
issues critical to development of an acquistion plan” that extends through 2010 and
beyond. (Allen, 1996) Phase 1 of the two-phase sudy provides a preiminary Road
Map and was completed in 1996; Phase 2, which concentrates on the quaditative factors
of NSFS and modding NSFS impact on the Joint land bettle, is currently ongoing at
JHU/APL.

The overal Road Map development in Phase 1 resulted in general observations,
conclusons, and recommendetions for the future of NSFS. Some of the observations on

the current state of NSFS are:

Perceptions have shifted from NGFS to NSFS.

Warfighting concepts and scenarios are not yet mature.

Joint command, control, communications, computers, and inteligence

(C*1) architectures are not keeping pace with weapons devel opment.
The organizationd hierarchy established to manage NSFS architecture or
“system-of-sysems’ iswiddy diffused.

Compounding these observations are key threet target trends that reved shortfdls
in NSFS and serve as drivers for future requirements. Among these trends are use of

short dwdl time and mobile targets and enemy employment of longer range wegpon

10

sysdems. Chief among the conclusions and recommendations drawn from Phase 1 of the

Road Map are (Allen, 1996):

There exists a need for a new vision that captures the relationship between
tactical and srategic fires and the key performance parameters of NSFS

(range, lethdity, and responsveness).

There is a need for quantitative and quditative analyses to support sound
Navy acquisition decisons.

In February 1998, JHU/APL released a report entitted Land Attack Warfare
Technical Studies that addressed the above recommendations. The report documents the
results of three sudies conducted a JHU/APL. The fird two investigations were
peformed under the umbrdla of the Surface Combatant Land Attack Weapons Study
(SCLAWS). The firgd was “a sudy which investigated the potentia importance of Nava
Surface Fire Support advanced gun wegpon systems in the context of a Marine
Expeditionary Force (MEF) levd Joint-gpproved scenario.” (Zimm, 1998) The second
was a “sudy which invedigated some of the issues surrounding optimizng the
employment of low-Circular Error Probable (CEP) rounds” (Zimm, 1998) The third
sudy investigated “the potentid of using advanced Tactics, Techniques, and Procedures
(TTP) in the employment of advanced NSFS wegpons” (Zimm, 1998) All three
invedigations utilized a group of exiging modds, with and without mgor code
modifications.

SCLAWS Part 1A concluded that ERGM is able to shape the battlefield prior to

engagements through a superior combinaion of range, lethdity, and responsiveness. In

11

addition, different munition types are necessary to effectively engage a diversty of
targets. Target mobility and hardness issues were addressed. Lastly, the study concluded
that surface combatants armed with anti-armor termindly homing rounds would benfit
by preserving their ability to save ammunition for other targets. (Zimm, 1998)

Pat 1B of SCLAWS was a wegpons optimization andyss. Among the
recommendations offered was the importance of target location error (TLE) reduction to
improve fire support wegpons effectiveness. (Zimm, 1998) Also recommended was the
development of dgorithms to determine optimd disgpense diameters againg different
targets. The study determined that optima dispense diameters vary for individud target
types, but smulation runs with mixtures of different target types were not conducted.

The sudy dso cited a need for an NSFS fire control system that facilitates a
Multiple Rounds Smultaneous Impact (MRSl) cgpability. The idea behind MRS is to
coordinate individua wegpon TOF such that multiple rounds impact one or more targets
smultaneoudy. Theoreticdly, MRS would degrade the effectiveness of enemy atillery
tactics such as “shoot and scoot” that seek to reduce ther vulnerability. MRS has the
support of many subject matter experts who espouse the benefits of massed or volume
fire. In 1996, Lieutenant General Paul Van Riper documented the requirement for
volume fire in Naval Surface Fire Support Requirements for Operational Maneuver
From The Sea.

The third study incorporated advanced TTP into a four-mode consortium, which
included the Integrated Theater Engagement Modd (ITEM), the “Enhanced Lanchester”
modd (ELAN), the Target Acquisition Fire Support Modd (TAFSM), and the Army’s
ARTQUIK model. Code changes were made primarily to TAFSM, the Army’s premier

12

fire support modd. The study concluded that advanced TTP and “shooting smart” were
critica to the reduction of ERGM quarntity required to support aMEF. The results dso
demondtrated the significance of increased magazine Szes. When magazine capacities
were limited, ships spent much of the engagement off line replenishing their ammunition.

In 1999 JHU/APL completed an andyss of dterndives study which examined
“the rddive effectiveness in a land atack role of a 155mm Trainable Advanced Gun
System as compared to a 155mm Vertical Advanced Gun System.” (Zimm, 1999) Once
again, TAFSM, ELAN, and ARTQUIK models were linked. The study concluded that
ovedl a 155mm Tranable gun outperformed a 155mm Verticd gun as wel as a 5-
inch/62-cdiber gun. This concluson is in agreement with the most recent
recommendation made by United Defense, the prime contractor for the DD 21 gun
desgn, for a traditiond, turreted gun in lieu of a verticd gun. The Navy has concurred
with this recommendation and will pursue atrainable gun solution. (Skibitski, 1999)

The debate continues over what land attack missiles to deploy on Aegis cruisers
and destroyers to improve NSFS capabilities. For more than three years, the Navy has
wrestled with this decison of what NSFS missiles to ingal on these surface combatants.
In April 1999 Chief of Navad Operations Admird Jay Johnson agreed with a
recommendation for the Navy to purchase LASM. The Navy congders the procurement
of LASM to be more cost-€ffective than converting the ATACMS to NTACMs. The
Navy plans to convert 800 to 1,200 aged SM-2s to outfit 22 Aegis cruisers and 27 Aegis
destroyers. (Schweizer, 1999) Meanwhile, NTACMS builder Lockheed Martin has
begun an intense lobbying campaign, assating that NTACMS will be less codly than
LASM because, with a larger warhead and greater range, fewer missles will be required

13

to destroy enemy targets. JHU/APL conducted the most recent evduation of the two
missiles, but neither missile dominated the other in the study.

NSFSSm was crested as a fird sep toward the god of providing military
planes and andyss with a component-based smulaion tool that can ad in the
formulation of integrated NSFS gun and missle firing policies agang mobilerdocatable
targets. While not definitive, the smulaion mode is designed to operate on different
plaforms and to possess sgnificant flexibility such that modifications can easlly be made
to increase the resolution or focus of the modd. For example, ingead of andyzing the
NSFS problem, NSFSSm could be extended to examine defensve firing policies for
surface combatants againgt anti-ship missles (ASM). Another desrable feature of
NSFSSm is tha its user can quickly modify input parameters and immediady run
gamulations usng a new data set (Fig. 1). Appendix A discusses the data structures and
Java source code that make this possible.

Having provided a brief discusson of the chalenges for NSFS and an overview
of some dudies that have been performed to address relevant NSFS issues, the next

section describes the structure of this thesis.

14

ResUls

Ainafasir datashonlarpecs in

AnefesimdatEround s pacs in

Adnefseinmidatsuris il Epece.ini
_ Bnstasirmiatatashazic b

in=fes i id ksl = mup. i

Figurel. Editing Input Filesin NSFSSim

NSFSSim dlows the user to easly modify input data By
dicking on the Edit menu, the user can access any one of
five editable data files. Changes to the data are made by
modifying exiding text fidds and then ovewriting the
current file.

D. THESISSTRUCTURE

NSFSSm is a discrete-event smulaion written usng the Java programming
language. As is the case with many sSmulation dudies conducted a the Nava
Postgraduate School (NPS), the flexible component architecture resident in NSFSSim is
achieved by the use of Simkit, a discrete-event smulation package authored by Assstant
Professor Arnold H. Buss and Lieutenant Kirk Stork, United States Navy (USN). (Stork,
1996)

The next chapter will provide a detalled description of this andyss tool, focusng

on its devdopment as wel as the logic, assumptions, and interactions that drive the
15

model. Chapter 11l will offer an account of the types of andyss that can be conducted
usng NSFSSm. Findly, Chapter 1V will summarize the results of the study, offering

conclusions and recommendations for further research.

16

1. NSFSSIM

NSFSSm was developed as an andytica tool to provide insights into the problem
of optimizing advanced NSFS wegpons employment agang mobile, short dwdl time
targets. The modd’s object-oriented desgn enables its extendon to the fulfillment of
other purposes beyond this application. Conceivably, NSFSSm could be used to address

the following issues rlevant to smulation studies (Townsend, 1999):
Hardware acquistion, in which the new sysem (or additionad purchases)

are evaluated for their comparative worth.

Force dructuring, in which the force is shaped to incorporate the correct

ratio of wegpon systems of the right types.

Tecticd Development, in which nontlethd gSmulaion can identify

potential strengths and weaknesses of certain tactics.

Capability of Forces, where the ability of the force to accomplish missions

in theater is evauated.

NSFSSm uses a discrete-event smulaion methodology that is written in Java

and uses some of Simkit's existing components and functions.

A. METHODOLOGY

The decision to utilize Java and Simkit to build NSFSSm was an easy one. Java

offers platform independence, security, and powerful programming capabilities that are

17

not found in other languages. Simkit, which is written in Java, likewise provides a wedth
of software components. When properly combined, or “loosdy coupled,” these
components can produce a robust and flexible discrete-event smulation. (Bradley and
Buss, 1998)

Smulation methodology was chosen to invedigae NSFS firing sequences
because of the intrindc properties of the modern battlefiedd. Forces interacting on a
modern battlefield will exhibit stochastic properties. Many interrelationships combine to
create a complex, nontlinear dgtuation. A discrete-event smulation can modd the
dynamic processes associated with the modern battlefield. As is the case with most red-
world systems, the NSFS problem is too complex to be evduated andyticdly usng a
puredy mahematicd method. On the other hand, by virtue of today’s powerful
computers, asmulation enables ardatively rapid numerica evauation of the problem.

Within NSFSSim, a discrete-event mechanism was used to advance the smulated
clock. The date variables in a discrete-event Smulation change ingtantaneoudy a certain
points in smulated time, which correspond to the occurrence of events. Simkit provides
al of the basic tools needed to condruct a discrete-event Smulation: a mechanism for
scheduling events, updaing an event list as events occur, and removing events from the
event list.

Having presented the generd methodology of NSFSSim, we next turn to a brief
discusson of object-oriented programming (OOP) principles as a precursor to the more-

detailed moddling aspects of NSFSSm.

18

B. MODELING PRINCIPLES

Before beginning an overview of NSFSSm's component-based design, it is
useful firg to provide a rudimentary introduction to OOP definitions and modding
principles. This section provides a brief description of OOP and its important design
concepts, such as inheritance and encapsulation. In addition, unique Java modeing
concepts will be presented.

1. Obj ect-Oriented Programming

OOP has redefined the ways software developers think about and design ther
programs. Traditiona, procedure-structured programming focuses on the design of
dgorithms and usng data structures to manipulate those logic functions. OOP reverses
this gpproach, focusing firg on the design of the data structures and then incorporating
functions into the data structures. “Simply Stated, object-oriented design is a technique
that focuses design on the data (= objects) and on the interfaces to it.” (Hortsmann and
Cornell, 1997)

A central concept in OOP is designing the data Structures, or objects, such that
each is responsible for executing a group of related tasks. When an object relies on
functions or properties of another object, the former should “ask” the latter for the desired
information via method cdls rather than directly manipulate that object's data. In this
manner, internd data and information remains hidden within objects. This principle of
data hiding, referred to as encapsulation, enhances reusability and tends to minimize the

time it takes to debug programming errors.

19

In OOP classes are templates for objects. The class is the Sngle most important
component in OOP design because it is the blueprint from which an object is actudly
congtructed. When one creates an object using a class template, one is said to instantiate,
or create an instance of, an object. For example, with aline of code like

SPArtillery artillery = new SPArtillery();
the new operator is used to creste an artillery object (instance) of the SPArtill ery
cdass. In OOP terminology, the object is instantiated. In OOP each object generaly
congsis of accessible functions, or methods, and data, or instance variables,

OOP dlows one class to inherit the behavior, or methods and instance variables,
of another. The motivaion for this modding principle, commonly caled inheritance,
includes reuse and abdracting common elements among classes. Other terms related to
inheritance are superclass, subclass, and extends. The dass from which another class
inherits its functiondity is cdled the superclass the inheriting class is the subclass. Said
another way, the subclass extends the superclass. The notion of extending a class is
attractive because one is able to reuse the desrable behaviors of the superclass, a the
same time, one is able to add or change behaviors to adapt to changing needs or for the
purpose of specidization. To extend a class in Java, one uses the keyword ext ends.

For example, theline

public class DD21 extends NSFSShip {

saysthat the DD21 class inherits the behavior of the NSFSShi p class.
Unlike some OOP languages, Java does not alow multiple inheritance. That is, a
Java class can extend only one class. However, Java provides the notion of an interface,

a powerful festure that affords the developer the ability to abstract common methods

20

from more then one dass. The interface condruct in effect replaces multiple inheritance
of cdasses with multiple inheritance of interfaces. An inteface, which contains no
concrete methods or variables of its own, is essentidly a contract signed by any class that
implements it. The contract is to provide, or implement, every method in the interface.

The implementing class is free to decide the internal workings of those methods. For

example, NSFSSm usesaWeapon interface that conssts of the following lines of code:

public interface Wapon {
publ i c doubl e get MaxRange();
publ i ¢ doubl e getLet hal Radi us();
publ i c doubl e getProbKill (Mver target);

}
The NSFSWeapon class implements the Weapon interface by usng the keyword
i mpl enent s:
public class NSFSWeapon extends SinEntityBase inplenents Wapon {
This code promises that the NSFSWeapon dass will have a get MaxRange method, a
get Let hal Radi us method, and aget Pr obKi | | method that takesaMover object.
Mover itdf isan inteface implemented by theBasi cMover dassin Simkit.

2. ThelListener Pattern

Java's interfaces can be used to implement a “lisgener pattern,” another important
modding principle utilized extensvey in Smkit. Implementing dasses use the
Li st ener interface for the purpose of handling events, specificaly GUI events such as
mouse clicks. The idea here is tha a mode’s view should change in response to GUI
events. The lisgener pattern enables an interested “lisener” to be notified of events as
they occur so that views may be modified accordingly. Java s event handling mechanism

can be summarized in the following manner (Horstmann and Corndl, 1997):

21

A ligener object is an ingance of a class tha implements a specid
interface cdled (naturdly enough) alistener interface.

An event source is an object that can register listener objects and send
them notifications when events occur. These natifications are methods of
the ligener interface.

A ligener object is registered with the source object with the following generd

line of pseudo-code:
Event Sour ceObj ect . addEvent Li st ener (Event Li st ener Obj ect) ;
Smkit gpplies the same event-notification pattern but emphasizes smulaion events and
object dtate changes. Simkit's ligener pattern, likewise, is implemented with one line of
code:
Si mMEvent Sour ce. addSi nEvent Li st ener (Si nEvent Li st ener) ;

In Smkit a Si mEvent Li st ener object registered to a Si mEvent Sour ce will be
notified of each Si mEvent (a Smkit method with the prefix “do”) for which it has an
identical event. Suppose, for example, that a Count er Bat t er y object named radar is
registered as a Si mEvent Li stener withan Artill eryBattery object named
battery. The code would look something like this:

battery. addSi nEvent Li stener (radar);

Now suppose that the ArtilleryBattery class has a “FireRound” event condructed as

follows

public void doFireRound() {
.internal code for this nethod
}

If the radar indance wants to be notified of the battery’s “FireRound” event, the

Count er Batt ery class would have to have a method with exactly the same method

congdruction—that is, a public void doFireRound() mehod, in which the internd
2

code may be different from that of the source method in the Count er Batt ery class.
Smkit's implementation of the ligener patern endbles efficient event handling within a
smulaion mode with little more than afew lines of code.

3. Third Party Components

In addition to making extensve use of Smkit's Si nEvent Li st ener pattern,
NSFSSm borrows Simkit's notion of third party components. Simkit provides a non
patisan Ref er ee cdass to adjudicate detections within a dmulation. The Refereg’s
tasks include maintaining a ligt of dl targets and sensors and scheduling detections when
aMover or a Sensor datsmoving. Like Mover, Sensor isaninteface. Generdly
gpesking, when the Referee determines that a target is within the range of a sensor, the
Referee by default creates a Cooki eCut t er Medi at or ingance that implements the
Medi at or inteface. In this manner, a mediator is crested only when needed and is
respongble for adjudicating the actud interactions between a sngle sensor and a single
target.

Because movers and sensors should not be entrusted with the responsbility of
determining their own detections, the referee and mediators are created as third party

components to serve as honest brokers in the determination of sensor-target interactions.
Although NSFSSm does not utilizz Smkits exising Referee and

Cooki eCut t er Medi at or clases it gplies the same modding principles to build
third paty components to adjudicate the interactions between weagpons and targets.

These components will be discussed at the end of the chapter.

23

4, Manager Components

Wheress third party components are not alied with a particular sde in a combat
samulation, manager components within NSFSSm are created with the express purpose
of directing the actions of a paticular Mover implementaion. The use of managers is a
practicad agpplication of object-oriented or component-based design. In its most
rudimentary form, a mover is respongble for executing movement events and reporting
its implicit date within the discrete-event paradigm. A mover’'s manager serves in a
command and control capecity to direct the mover to its next location and schedule other
events that may be associated with the mover depending on its classfication. For
exanple, an ArtilleryBatteryManager indance directs its subject atillery
battery to random locations on a two-dimensond Dbatlefidd and schedules
“StartEmplacement,” “EndEmplacement,” “FireRound,” “SatDisplacement,” and
“EndEmplacement” events for the atillery battery. From a desgn sandpoint, using
manager components to separate basc movement functions from other actions is
desrable. Once again, this modding concept serves to increase reusability and minimize
debugging time.

Having provided a brief introduction to the modding principles and terminology
used in NSFSSm, we now turn to a description of the physical structure of NSFSSm and

the actual classes usad to build the amulation modd.

C. NSFSSIM STRUCTURE

NSFSSm congsts of a Java package named “nsfssm,” an input data directory, an

icon directory that contains grgphica images to populate the modd’s views, a default
24

output directory, and a help directory. Each sat of smulated engagements may ether be
viewed in the animation mode (Fig. 2), as a textud dislay of the event ligt, or in “slent”
mode; Appendix B discusses the cregtion of animation in NSFSSm. Pertinent data is
collected throughout and is written to a default text file in the output directory at the

conclusion of each st of runs.

&4 NSFSSim Animation - Run 1 of 100

Wl o | om | ow |

Figure2. NSFSSim’'s Animation Mode

The animaion mode provides a visud display of the running smulation. This screen
shot shows two DDG 51's and one DD 21 on dation conducting NSFS. A CG 47
cruisr is emroute to the ammunition onload rendezvous point to replenish its
ammunition inventory. Artillery batteries are depicted in the foreground. Those
rendered in red are a full strength. Any battery rendered in ydlow is firing atillery
rounds. Each gray battery has had one or more of its guns destroyed. An explosion
indicates that at least one gun in a battery has just been destroyed. Once a battery has
had dl its guns destroyed, it is removed from the screen (left exploson). The white
smi-circes depict ERGM (G) and LASM (M) fired from the surface combatants.

25

Because NSFS is conducted by surface combatants whose stand off ranges
minimize thelr susceptibility to enemy counterattack, NSFSSm uses a predator-prey
design. That is, the NSFS ships within the modd are “predators’ that use tecticd fires to
defeat enemy <df-propdled and towed atillery beatteries, the “prey.” As the names
imply, during the course of a smulated engagement, the ships ae invulnerable, while the
atillery batteries invariably are attrited.

Although red-world threats pose formidable chdlenges in the redm of
amultangty of missons, the theds sngular scope of invedigaing favorable NSFS
gun/missile firing polices obviated the need to model other misson areas. As such, no
enemy surface combatants, aircraft, or submarines were modded. Furthermore, Marines
and Army troops, for which NSFS is designed to protect and empower, were omitted
from the modd.

NSFSSm models such entities as the NSFS surface combatants of the next
decade, two of the advanced NSFS weapons that are being developed to advance 21%
century warfighting concepts, and two types of enemy fidd atillery batteries The
movers exhibit smple linear motion and interact on a two-dimensona battlespace.
These smplifying assumptions are made possible due to the fact that ERGM and LASM
will use GPS assts only for precison guidance to each wegpon's respective am point.
The wegpons lack of active radar seekers precluded the necessity of modeling the target
acquigtion process, which otherwise would have mandated the extenson of the
battlespace to a third dimension and would have introduced the problem of weapon-target
geometry. The entities that will execute the firing policies that are being invedtigated in
thisthessare NSFSShi p instances.

26

D. NSFS SHIPS

Figure 3 illugtrates the class hierarchy for NSFS shipsin NSFSSm.

BasicMover

Simkit
NSFSShip... NSFSSim
firing policy, stand off range,
target stale time,
ammunition onload time
I
| \ |
CGA47... DD21... DDG51...

maximum speed,
number of ERGM,
number of LASM

maximum speed,
number of ERGM,
number of LASM

maximum speed,
number of ERGM,
number of LASM

Figure 3. NSFSShip Component Hierarchy
The NSFSShip class extends Simkit's BascMover class.
CG47, DD21, and DDGSL, in turn, subclass NSFSShip.
The itdicized text within esch box indicaes modifidble
input parameters.
The NSFSShi p cdlass is the superclass for the surface combatants in NSFSSim.

NSFSShi p itsdf extends the Basi cMover cdass in Simkit.

Therefore, each NSFS
ship inherits the behavior of a Basi cMover. Spedficdly, each ship exhibits uniform
liner motion. Additiondly, NSFSShi p entities share the following user-specified
paraneters firing policy, gand off range, ammunition onload time, and target dde time
(i.e, the maximum time a target am point can resde in the engagement queue before it is
deleted).

The software components used to modd the surface combatants include the
DD21, DDG51, and CGA7 classes, each extending NSFSShi p (Fig. 3). While the names

of the ship dasses may gopear to be confining, some flexibility is provided to uniqudy

27

configure each ship type. Maximum ship speed as well as ERGM and LASM inventories
may be specified for each ship class The modd’s user may specify the creation of as
many of each of the surface combatants as he desires.

For each DD21, DDG51, and CG47 that is crested, NSFSSm indtantistes a

manager component, which is discussed in the following section.

E. NSFS SHIP MANAGERS

Each NSFSShi p is controlled by an individud Shi pManager instance. Based
on the firing policy, the manager directs the execution of its desgnaed ship's fire
misson. The firing policy is an independent “variable’ specified by the user prior to a
st of runs. In NSFSSm, a firing policy conssts of a sequence of characters, or a Java
Sring—g's, G's, m's, M’s, I's, and L’s are the only accepted characters—where a“g” or
a "G’ represents a “ShootGun” event, an “m” or an “M” corresponds to a “ShootMissile’
event, and an “I” or an “L” schedules a “Look,” or kill assessment event. For example, to
gpecify a Shoot (missle), Look, Shoot (missile) firing policy, one would enter either the
Sring “mim” or the Sring “MLM” in the NSFSShip firing policy fidd in NSFSSm's
setup didog (Fig. 4).

As long as the NSFSShi p has sufficent numbers of ERGM and LASM
remaning to fully execute the firing policy, its ship manager will cause it to conduct
assgned NSFS missons. If, for ingtance, the promulgated firing policy was to fire three
ERGM followed by launching two LASM—"GGGMM"—a a given am point, the
ShipManager would direct the firing of the specified sequence of rounds and missles
usng the ship's avalable gun(s) and launcher(s). The user may specify the probability

28

digributions that underlie the Shi pManager cass processng time and firing duration

between shots. The default times are derived from Uniform(a, b) distributions.

C:\Java\nsfzzim\data\setup im

Histogram NSFSShipiNumberEntities Simulation UnrepCoordinateslAreaCoordinates'

targetstaleTime [0.0833 yCoordOffzet [250.0

standOMRanoe |13EI.D firinaPolicy (e

ammoOnioadTime lS.IZI

cuen

Figure 4. Specifying a Firing Policy

NSFSSm's setup didog dlows the user to modify
parameters related to the histogram output, NSFSShip
properties, number of modd entities, smulation controls,
and battlefield coordinates. This screen shot shows user-
sdection of the NSFSShip tab and the highlighting of the
firing policy fidd. The String “MLM” indicates a Shoot
(missile), Look, Shoot (missile) firing policy.

Once a ship's ERGM and/or LASM inventories are depleted below the leve
necessary to carry out the firing policy, the corresponding ship manager directs the ship
to a user-specified ammunition onload rendezvous point. In actua combat conditions, a
surface combatant likdy would expend dl its munitions and missles prior to departing
the operating aea to replenish its ammunition. However, because this thess only
invedigates the implications of gpecific firing sequences on enemy atillery batery
effectivenessy, NSFSSm in its present form disdlows this eventudity. Future
goplications, on the other hand, could easly ater this behavior by extending the
Shi pManager classand rewriting a single method.

As would be the case in actud NSFS operations, the NSFSShip ingance is

unavalable for fire missons during the time it takes the ship to complete the ammunition

29

onload and return to dation. Upon completion of the ammunition onload, the ship's
ERGM and LASM inventories are reset to ther initid levels. Back a its initid Sation,
the ship once agan is avalable to execute NSFS missons receved from the misson

scheduling component, which will be discussed next.

F. NSFSMISSION SCHEDULING

Misson scheduling functiondity resdes within @ an indance of the
NSFSM ssi on cdass The scheduler’s logic in the present verson is smple. From the
st of ships that are on gation and within maximum wegpons release range of a misson
am point, the NSFSMisson object randomly chooses a designated ship. This behavior
can be dtered eadly to incorporate more complex shooter assgnment and scheduling
dgorithms.

There are two mgor NSFS missons—counterbattery and cal fire missons, both
of which must be highly responsve in order to protect troops in contact and enable
tacticd maneuvers againg the enemy. In the most generd terms, a counterbattery
misson is one tha is initisted by countertargeting radar that detects the firing of enemy
atillery rounds. Based on the trgectories of the atillery rounds, the radar system
cdculates an edimate of the firing gun’'s location. Engaged troops or forward observers
(FO), on the other hand, generdly initiate cdl fire missons.

NSFSSm crestes two objects that generate these NSFS missons. The
CounterBattery object is an indance of the CounterBattery clas and
determines the need for counterbaitery missons. The Cal | Fi r e ingtance is created

fromtheCal | Fi r e classand generates cdl fire missons.

30

1 Counterbattery Missions

NSFSSim's Count er Batt ery object serves as a countertargeting radar. The
Count er Bat t ery dass does not implement Smkit's Mover and Sensor interfaces,
as such, the Count er Batt ery instance does not possess coordinate locations or a
maximum sensor range. The CounterBattery indance rdies soldy on
probabilities—specificaly, the probability that its radar is on and the probability of
detection—to determine the detection of individud artillery rounds.

Figure 5 depicts the logic flow for the generation of counterbattery missons. The
Count erBattery indance ligens to the “FreRound” event of each enemy atillery
battery. As each round is fired, the Count er Bat t er y object randomly checks for
counterbattery detection. A detection occurs if two randomly drawvn numbers are,
repectively, less than the probability that the counter-targeting radar is active and the
conditional probability of detection. Both of the probabilities are user-defined
parameters. Given a deection, the CounterBattery indance generates a
counterbattery mission againgt the subject battery. Target location error (TLE) is applied
to the location of a randomly chosen gun within the battery to produce the misson am
point. The TLE didributions are x-coordinate and y-coordinate errors. By default, the

digributions are Uniform(a, b), but this may be modified by the user.

31

Artillery battery
executes a
“FireRound” event

Random draw
<P{radar on}?

Random draw
< P{detect}?

Apply TLEtoa
randomly chosen
gun in the battery

A 4
Generate counterbattery
mission w/ above aim pt

Figure5. TheLogic of Counterbattery Mission Generation

The random nature of NSFSSImM's counterbaitery misson
generation is intended to smulate the uncertainty inherent in
combat. Clearly, a counterbattery misson initiated a the
beginning of a battery’s firing sequence has a better
probability of success than one that is queued by detecting
thelast artillery round fired.

2. Call FireMissions

The Cal | Fi r e object generates cdls for fire through an arriva process. The

user may change the probability diribution underlying the cdl for fire arivds. By

default the probability didribution is Exponentid(l) so that the cdls arive according to a
32

Poisson process. When a “CdlForFreArrival” event occurs, the Cal | Fi r e component
randomly chooses one of the guns of an atillery battery and applies TLE to that location.
At this point, the Cal | Fi re ingance generates a cdl fire misson request with the
cdculated misson am point. The x-coordinate and y-coordinate TLE didributions in the
Cal | Fi r e dass are didtinct from those in the Count er Bat t ery class. Asisthe case
in the Count er Battery class, the default TLE didributions are Uniform(a, b), but
these too can be modified by the user.

Usng the SmEventLigtener pattern, the requests for counterbattery and cdl fires
are heard by the NSFSMisson scheduler. Once the misson scheduler makes an
assgnment, the dedgnated ship's manager is notified of the assgnment and directs the
execution of that misson. It is worth noting that, due to the randomness of the misson
generation methodology, NSFSShi p objects will often fire a a moving atillery battery,
leading to the wasted expenditure of NSFS weapons.

The next section describes the component design of the targets of these NSFS

missons—the enemy artillery batteries.

G. ARTILLERY BATTERIES

Figue 6 illudrates the ArtilleryBattery component hierarchy. The
ArtilleryBattery cass modds enemy atillery betteries. Like the NSFSShi p
class, this cdass subclasses Basi cMover and is aso extended by other
Classes¥sSPArtil | ery and TowedArti || ery. Each atillery bettery is ingantiated
as a sngle mover. To modd the battery characteristic, each ingtance has a vector of

coordinates representing the individua gun locations within the bettery.
33

BasicMover Simkit

ArtilleryBattery NSFSSim
I
\ |
SPArtillery... TowedArtillery...
— maximum speed — maximum speed
— guns per battery — guns per battery
— gun separation — gun separation
— gun salvo size — gun salvo size
— emplacement time — emplacement time
— firing duration — firing duration
— displacement time — displacement time
L emergency displ time ' emergency displ time

Figure6. ArtilleryBattery Component Hierarchy
The SPArillery and TowedArtillery classes extend the

ArtilleryBattery class, which subclasses BasicMover. The
user-defined data parameters are shown. Note that the
italicized parameters represent probability distributions.

SPArtillery and TowedArtillery objects possess the same date
variadbles. However, the specification of these variables is left to the user. Therefore, the
characterigtics of one battery type can be identica to that of the other, or as different as
the user dedres them to be Redidicdly, the peformance and vulnerability
characterigtics should be different. It is generdly accepted tha SPA gun systems are
more capable and less vulnerable than towed guns.

Future SPA sysems, such as the U.S. Army’s developmentd 155mm Crusader
sdf-propelled howitzer XM2001, will possess dae-of-the-at sysem survivability
enhancement features. Mogt importantly, these wegpon systems will possess increased

mobility, speed, and firepower over today’'s fidd artillery sysems. Automated

reermament—to include projectiles, charges, fud, water, and lubricant—will incresse

crew survivability by keeping the crew under armor, enabling continued availability for
missions. (Foss, 1998)

Towed atillery systems, as the name implies, are less mobile than SPA systems.
Reduced mobility on the battlefield egquates to reduced survivability. Moreover, towed
atillery guns do not enjoy the armored protection usualy found on SPA weapons.
Compounding this vulnergbility is the higher manning leve required to operate and
maintain the towed systems.

In the execution of fire missons, however, SPA and towed artillery sysems share
common functiondities. ~ NSFSSm dructures atillery missons as a sequence of

vaiable-time events,

Movement to the geographic firing location

Emplacement (i.e, preparations made prior to firing such as postioning

gpades and shooting azimuths)

Fring of atillery rounds (the modd assumes that each battery has an

infinite ammunition inventory)

Digplacement (i.e, preparations made in advance of movement such as

gun stowage for travel)

“Scoot” (i.e., movement to anew location in avoidance of counterfire)

If, after emplacement, an artillery battery loses one or more of its guns to NSFS weapons
fire, it immediately conducts a hastened, emergency displacement and scoots to a new

location. The atillery battery in this case is deemed to be in distress and is unavailable to
35

conduct fire missons until it ends its “Scoot” event. The time it takes to conduct the
emergency displacement as well as the above lised events are random times taken from
probability digributions. Once again, the user may modify these didributions, by
default, they are Uniform(a, b).

As is the case with the NSFS ships, each atillery battery is controlled by a

manager component, which will be discussed next.

H. ARTILLERY BATTERY MANAGERS

The ArtilleryBatteryManager class provides the template for the
cregtion of manager components that direct the missons of individual artillery batteries.
To dlow for future specidization, this class is subclassed by SPArti | | er yManager
and TowedArtill eryManager. Each manager indance is responsible for directing
fire missons, as defined in the previous section. In contralling movement events, the
managers choose uniform random locations on the two-dimensond battlefidd, taking
into account the stand off range of the surface combatants.

The actud firing sequence scheduled by a manager component depends on a
number of factors. The number of “FreRound” events executed during an uninterrupted
fire misson is determined by multiplying the number of surviving guns in the battery by
the individud gun sdvo sze The user may specify the sdvo sze, which by default is
four rounds. The duration of the firing sequence is dso dependent on the gun’s rate of
fire as defined by a firing duration probability digtribution. This, too, can be modified by

the user, the default being Uniform(a, b). The emplacement and displacement events that

are conducted, respectively, prior to and following the firing sequence are merdly time
delays placed on and removed from the event list.

Artillery bettery fire missons ae geneated in a Smilar fashion to cdl fire
missons. NSFSSm's user is expected to provide an ariva probability distribution for
eech of the two atillery battery types The default misson ariva process for both
battery types is the Poisson process. Fire misson generation and assgnment are the
respongbility of a sngle ingance of the EnenyM ssi on dass This object uses smple
queuing theory to decide the assgnments. When a towed artillery misson ariva occurs,
for example the EnenyM ssion indance assgns the misson to the
TowedArtill ery object with the smdlet misson queue. Using the ligener pattern,
each Artill eryBatteryManager object ligens for these fire misson assgnment
events. The longer the atillery batteries remain in one location emplacing, firing rounds,
and displacing, the bigger the window of opportunity for the NSFS weapons to achieve
battery kills.

The next section discusses the components that modd developmental NSFS

precison munitions and missiles.

NSFSWEAPONS

The NSFSWeaponMover component hierarchy is depicted in Figure 7. The
Weapon interface, introduced in Section B, provides methods for obtaining a wegpon's
maximum range, letha radius, and probability of kill (PK) agang a given Mover object.

The NSFSWeaponMover class extends Basi cMover and implements the Weapon

37

interface. The ERGMVbver and LASMVover classes extend NSFSWeaponMover and

represent developmenta precision-guided NSFS munitions and missiles, respectively.

BasicMover Simkit
NSFSWeaponMover NSFSSim
I
| \
ERGMMover... LASMMover...

— maximum speed

— lethal radius

— maximum range 1

— maximum range 2

— PKs vs SPA

— PKs vs towed artillery
— X-coordinate error

L y-coordinate error

— maximum speed

— lethal radius

— maximum range 1
— maximum range 2
— PK vs SPA

— PK vs towed artillery
— X-coordinate error
L y-coordinate error

Figure 7. NSFSWeaponMover Component Hierarchy

The ERGMMover and LASMMover clases extend the
NSFSWegponMover class, which subclasses BascMover.
The user-defined data parameters are shown. The itdicized
parameters denote probability distributions.

An ERGMMVbver object is created each time a ship manager schedules a

“ShootGun” event. Similarly, a “ShootMissle’ event indantistes a LASMVbver object.
Each NSFSWeaponMover indance possesses the following modifidble parameters.

maximum speed, lethd radius, maximum range 1 (used if the wegpon is fired from a
C4A7 or DDG51 ingtance), maximum range 2 (in the case that the weapon is fired from a
DD21 ingance), x-coordinate error probability digtribution, and y-coordinate error

probability distribution.

ERGWbver and LASMVover indances dso have user-specified, lethd radius-
dependent PK values againg SPArtillery and TowedArtillery insances.
Because LASM is planned to contan a unitary warhead, the modd dlows the
gpecification of only one lethd radius for the LASMVbver dass. The vaue of this lethd
radius must match exactly the letha radius specified to obtain the PK vaue againg each
atilley type. On the other hand, ERGM will feaiure a varigble dispense diameter
capability. The achievable dispense diameters will be 20 m, 40 m, 60 m, 80 m, and 100
m. Accordingly, NSFSSm provides the user the capability of specifying five different
PK vdues for each of the two atillery battery types. Once again, for each battery type,
the ERGWbver cdass specified lethd radius must match one of the vaues required to
obtain the PK values.

Each ingantiaion of an NSFSWeaponMover ingance is accompanied by the
creation of a wegpon manager component. The NSFSWeaponManager class serves to
contral the flight of individua wegpons and is subclassed by the ERGMVanager and
LASMVanager casses. These managers are reponsible only for applying wespon
erors to the given am point and then directing the specified wegpon to the newly
adjusted coordinates. At the end of a weapon’s flight, a “Weaponlmpact” event occurs.

Thisevent is heard by athird party component caled the NSFSRef er ee.

J. NSFS REFEREE AND WEAPON TARGET MEDIATORS

The NSFSRef er ee object mantans regidries of dl the entities created at
gamulation run time. As NSFS ships, atillery batteries, and weapons change dates, they

may regider or unregider with the referee. For example, when al of the guns in an

39

atillery battery are destroyed, the battery permanently unregisters, becoming unavailable
to conduct fire missons or to be the taget of NSFS missons. Smilaly, when a
NSFSShi p indance departs to replenish its ammunition inventories, it unregisters with
the NSFSRef er ee 0 tha it becomes unavaladle for NSFS misson assgnments. The
NSFSShi p isadded back to the ship registry when it returns to station.

In addition to performing this bookkeeping function, the referee works with a
WeaponTar get Medi at or ingance to adjudicate NSFSWeaponMover hits and
mises. Each time the referee hears a “Weaponlmpact” event, it directs an instance of the
WeaponTar get Medi at or classto mediate the outcome of the weapon’simpact.

The WeaponTar get Medi at or ingtance checks al of the gun locations of each
registered ArtilleryBattery object. NSFSSm's BatteryFormati on dass is
regpongble for computing the actua gun locaiions. Given a user-specified gun
separation value, each BatteryFormation instance pogtions an artillery battery’s guns in a
“Lazy W” pattern, the orientation of which is randomly decided at run time. As the name
implies, the Lazy W paitern is a configuraion in which the guns appear to form one or
more linked “W’'s” This formation is commonly used to organize U.S. Army fidd
atillery batteries, which nomindly consst of sx guns (Fig. 8). Figure 9 describes the

logic flow for the adjudication of wegponttarget interactions.

Figure8. Typical “Lazy W’ Battery Formation

This figure illudrates a typica battery formation conssting of sx SPA guns
dispersed over a 100 m x 300 m area The circle shows the dispense
diameter around the impact point of one ERGM round. In this case, the
WegponTargetMediator would conduct two independent, random draws to
determine the kill assessments for the two guns located within the round's
lethdl area.

41

“Weaponl mpact”

h 4
Mediator gets

next battery <

Dist from gun
to impact pt <
lethal radins?

Random draw
< weapon pK v.
artillery type?

No

Gun destroyed
(Kill count ++)

More guns
in battery?

Yes

Another
battery ?

No

End mediation

Yes

Figure9. WeaponTargetMediator Logic

An atillery gun that lies within the dedructive pattern of an NSFS
wegpon is destroyed with a certain probability of kill.

42

For those guns that lie within the lethd radius of the NSFSWeaponMover’ s
impact point, the mediator conducts an independent random draw to determine hit or
miss. If the random draw is less than the NSFSWeaponMover’ s PK vaue, for the
soecified lethd radius, agang the paticular atillery type, the mediator determines that a
gun is destroyed. As mentioned previoudy, the determination of one of more gun kills
while a battery is dationary causes the battery to conduct an emergency emplacement.
The mediator performs this check for each registered artillery battery.

Having completed an overview of NSFSSm's smulation components, Chapter

[T will summarize the andyss usng NSFSSm.

THISPAGE INTENTIONALLY LEFT BLANK

1. ANALYSISUSING NSFSSIM

The previous chapters discussed the rationale behind the creation of NSFSSm as
well as the modeing principles and components that provide the framework for the
gmulation modd. This chapter summarizes the type of andyss that can be conducted
usng NSFSSm and briefly describes the use of the modd. Recdl that NSFSSm was
constructed to analyze two specific problems:

1) Determine the best firing policy for ships conducting NSFS againg mobile
targets.

2) Determine the mog effective ERGM dispense diameter againgt a given mix of
atillery batteries.

Before describing the scenario used to analyze hese issues, it is necessary firgt to discuss
NSFSSm's rdevant Measures of Performance (MOP) and the sdection of an appropriate

Messure of Effectiveness (MOE).

A. MEASURES OF PERFORMANCE

NSFSSm collects pertinent MOP data during each set of runs. These neasures
indude:
The average number of SPA missions conducted
The average number of towed artillery missions conducted

The average number of counterbattery missions conducted

The average number of cal fire missions conducted

The average number of artillery rounds fired

The average number of ERGM fired

The average number of LASM launched

The average number of SPA guns destroyed

The average number of towed artillery guns destroyed

The average number of SPA batteries destroyed

The average number of towed artillery batteries destroyed

From this set of vaues, one can formulate severa MOE dternatives to measure NSFS
ship firing policy effectiveness agangt the atillery bateries. Obvious choices include
andyss of dternatives (AOA), dtritiontype measures such as the average number of
total artillery guns destroyed divided by the number of NSFS wegpons fired or, smilarly,
the average number of tota artillery batteries destroyed divided by the number of NSFS
wegpons fired. Another MOE dternative is amply the average number of rounds fired

by the enemy artillery batteries.

B. MEASURE OF EFFECTIVENESS SELECTION

The most appropriate MOE to measure the effects of firing policy changes on
enemy atillery battery effectiveness gppears to be the lagt dternative mentioned, the
average number of rounds fired by the enemy atillery. An assumption in NSFSSm is

that the dedtruction of a least one gun in a dationary atillery battery will cause the

46

battery to conduct an emergency displacement and move to a new location on the
batlefidd. All other events including the firing of atillery rounds are interrupted as a
result of the emergency displacement. Therefore, an atillery battery that spends most of
its time scooting to new locations will not fire as many rounds as one that remains mostly
free from the harassment of effective NSFS wegpon employment. Within this context, a
truly effective firing policy is one tha causes atillery batteries to scoot before they are
able to fire their rounds. Having sdected an appropriste MOE, the next section will

describe the scenario used in the preiminary analyss usng NSFSSim.
C. SCENARIO DESCRIPTION

The resolution of NSFSSm in its present date is limited, and actua data
necessary to populate the mode is ether classfied or unknown. As such, the scenario
congtructed to address the problems of firing NSFS wegpons against mobile targets is a
notional one usng open source data However, the scenario is reasonable for the
purposes of this thess and yields some useful ingghts.

The scenario is a seventeen-hour battle conssting of four surface combatants—
two Aegis destroyers, one Aegis cruiser, and one 21% Century destroyer—conducting
counterbattery and cal fire missons agang an even mix of sx SPA batteries and sx
towed atillery batteries The guns in each batery have a laed separation of
goproximately 100 m, and each gun fires four rounds during an uninterrupted misson.
The battlefield is a 230 nm by 65 nm rectangular region. The NSFS ships stand off 25
nm from the coast line, and the atillery batteries maneuver no closer than 15 nm to the

coast. Therefore, LASM and ERGM, with speeds of mach 20 and mach 0.9,

a7

regpectively, mugt travel a least 40 nm to ther am points. The ship magazines are
loaded such that, during the course of the seventeen-hour scenario, each ship likedy will
go off line to replenish its ammunition inventory a least once or twice. Each ammunition
onload event lasts three hours, and it is assumed that there is no upper bound on the
number of onload events that can occur smultaneoudy. The onload rendezvous point is
located such that traversd times to and from the point equate to an additiond hour of off
dation time for the replenishing ships.

SPA battery missons arrive more frequently than towed atillery missons. While
both artillery battery types have a speed of 45 kph, SPA batteries on average have shorter
dwel times than do the towed atillery batteries. In addition, by virtue of the NSFS
weapon PK values againg the atillery types, the SPA batteries are less vulnerdble to
destruction than are the towed types.

The next sections discuss some preliminary andyss using the NSFSSm modd.

D. FIRING POLICY INVESTIGATION

A st of 100 runs without NSFS missions was conducted to establish a basdline
measure of average rounds fired when atillery batteries are not targeted. Figure 10
shows the corresponding NSFSSm hisogram for the number of artillery rounds fired.
Figure 11 is a screen shot of NSFSSm's text editor showing the petinent summary
datigtics of the basdine scenario. When no NSFS wegpons are fired at the artillery

batteries, the batteries fire on average 1355 rounds during a seventeen-hour period.

[E3 Number of Enemy Artillery Rounds Fired: Firing Policy ... =] E3

Cancel

20—

Coun‘c1D ||

t —l_r
okt | 1 | 1 | 1

1 1.2 1.4 1.6
Walue w1 03

Figure 10. Baseline Histogram of Artillery Rounds Fired

If the histogram option is enabled in NSFSSm, the user is
prompted to specify one of seven datistics to be graphed
in a higogram tha can be displayed at the end of a set of
runs. This screen shot shows a histogram of the number of
atillery rounds fired during 100 runs in which no NSFS
wegpons are fired.

49

[NSF55im Text Editor - C:\Java‘nsfssim\outputidefault txt [[=] E3

Average
Average
Average
Average
Average
Averadge
Averadge
Average
Average
Average
Average

CG 47 class ships = 1
DDG 51 class ships =
LDEl class ships = 1
3P4 hatteries = 6
towed artillery batteries =
Simualation runs = 100

munher5PMisszions
munberTowedMissions
mumberhrtilleryRoundsFired
mmberCounterBatteryMizsions
mumherCallFireMissions
mumherERGHFired
mmherLiSMLautiched
mmberiPHunzsDeztroyed
mmberTowedbunzbestroyved
mumheriPEatteriesbestroyed
mumbherTowedBatterieshestroyed

f

41.000
27.080
1355.3350
.0oa
. Qoo
.aoa
.aoa
.goa
.aoa
.goa
.0oo

o o o o o o o O

Ll

Cpen afile

Figure11. NSFSSim’'s Text Editor

NSFSSm'’s text editor can open, modify, and save any text file.

At the concluson of a st of runs, the user can open the default
output file and read the pertinent data for the completed runs.
This screen shot shows the default file for the basdine scenario
in which no NSFS weapons are fired. Note that on average 41
SPA missons and 27 towed atillery missons are conducted
when the atillery batteries are unharassed.

The firg firing policy teted was a sequence of five ERGM followed by three
LASM, or “GGGGGMMM.”

scenario was performed 100 times. Figures 12 and 13 show the text editor frame and

hisogram frame, respectively, for this particular scenario.

The ERGM dispense diameter was set a 60 m. This

[NSF55im Text Editor - C:\Java\nsfssim\outputidefault txt [Ei[=] E3

- Firing.pl:llil:}* = gggggmmm_ 3
ERGM dispense diameter = 0.06
N3F3 ship stand off range = 130.0
Number of CG 47 class ships = 1
Number of DDG 51 class ships =
Number of DDZ1l class ships = 1
Mumbher of 3PA batteriezs = 6
Number of towed artillery batteries = 6
Mumbher of simulation runs = 100

2

Average munber3iPMizsions 31.870
Average munberTowedMizsions 18.920
Average munberdrtilleryRoundsFired T28.970
Average nmumberCounterBatteryMizsions 1a.870
Average nmunmberCallFireMissions 95,610
Average nunberERGMFired 439,830
Average numberLASMLaunched 293.640
Average number3PHunshestroyed 16.060
Average nmumberTowediunzDestroved 17.5800
Average nunber3PEatteriesDestroyed 1.200

Average numberTowedBatteriesDestroyed 1.5%90

Ll

Cpen afile

Figure12. Firing Policy GGGGGMMM

During each counterbattery or cdl fire misson, each surface
combatant fired five ERGM and launched three LASM in
executing this firing policy. The times between the wegpon
firings were drawn from the specified firing duration digtribution.

With this firing policy the average number of atillery rounds
fired was reduced from the basdine levd to agpproximately 729
rounds during each seventeenhour battle.

51

Eg,ahlumber of Enemy Artillery Bounds Fired: Firing Policy GGGGGMMM [E[=] B3

Cancel

20—

Ccuunt1D o _ I

0.4 0.6 0.8 1
YWalue wl 03

Figure 13. Histogram for GGGGGMMM Firing Policy

This screen shot shows the corresponding histogram of the
number of artillery rounds fired when the NSFS ships used a
GGGGGMMM firing policy. The mean vaue obtaned by
performing 100 runs was approximately 729 rounds.

The next firing policy examined was dso a sequence of five ERGM and three
LASM. This time, however, the missles were launched prior to the firing of the
precison rounds¥aa MMMGGGGG firing policy—to determine whether or not the order
of the wegpons fired has an effect on the effectiveness of the enemy atillery batteries.
This scenario was peformed for a set of 100 trids. With this firing policy, the average
number of atillery rounds fired was gpproximatey 692 rounds. Figures 14 and 15,
repectivey, show the default output file and hisogram for this firing policy

implementation.

52

[NSF55im Text Editor - C:\Java\nsfssim\outputidefault txt [Ei[=] E3

NaF3 ship
Number of

Firing policy = nmmgoggd
ERGH dispense diameter = 0.06

stand off range = 130.0
Cx 47 class ships = 1

Mumber of DDG 51 class ships = 2

Mumher of DDZ1l class ships = 1

Mumbher of 3P4 batteries = 6

Number of towed artillery batteries = &

Mumbher of simulation runs = 100

Average nmunber3PMizsions 30,740
Average munberTowedMizzions 18.730
Average numberdrtilleryREoundsFired 692,310
Average numberCounterBatteryMissions l6.600
Average numberCallFireMissions 93.020
Average nunberERGMFired 475.110
Average nunberLAZMLaunched 287.140
Average number3PHunsDestroyved 17.290
Average numberTowedbunzDestroved 19.170
Average nmunmber3PBatteriesDestroyved 1.650
Average numberTowedBatteriesDestroyed 2.190

el

Figure 14. Firing Policy MMMGGGGG

By launching the missles fird, the NSFS ships improved upon
the MOE that was achieved by firing ERGM rounds fird. The
number of atillery rounds fired during each run usng the
MMMGGGGG firing policy on average was gpproximately 692

rounds.

[Ef Number of Enemy Adtillery Rounds Fired: Firing Policy MMMGGGGE =] B3

Cancel

20—

Count1D

wn
I

0.4 0.6 0a 1
Walue %l 03

Figure 15. Histogram for MMMGGGGG Firing Policy

For this firing policy, the mean number of atillery rounds
fired during each smulation run was 692.31 rounds. As

before, the hisogram was produced by conducting 100
amulation runs.

From the previous observations, it appeared that launching LASM, which is faster
and more lethd than ERGM, earlier in the firing sequence decreased the effectiveness of
the atillery batteries. Further tesing with different numbers of missles and munitions
but the same dructure yidded smilar results. In order to determine if the differences in
the mean number of rounds fired usng the GGGGGMMM and the MMMGGGGG firing
policies is ddidicdly dgnificat, a two-sample t-tet was performed. The t-test was
deemed appropriate because of the reatively large sample sizes involved and because the
higograns showed comparable sample variances The t-test produced a p-vaue of
0.0276. Therefore, a a sgnificance level of 0.05, it was concluded that the true mean

vaues ae dgnificantly different. This result was not surprisng because the

54

responsiveness of NSFS weapons is tremendoudy important to the success of NSFS
missons.

Somewhat surprisng were the results for a MMGGGG firing policy. That is, two
LASM and four ERGM per NSFS misson on average resulted in the firing of fewer
atillery rounds by the enemy batteries The output from 100 runs using this firing policy

are shown in Figures 16 and 17.

E&fﬁ M5F55im Text Editor - C:\Java\nsfssim\outputhdefault.txt [H=] E3

Firing policy = nmggody .ﬂ
ERGH dispense diameter = 0.06
N3F3 ship stand off range = 130.0
Number of CG 47 class ships = 1
Number of DDG 51 clazs ships =
Number of DD21 class ships = 1
Mumbher of 3P4 batteries = 6
Mumher of towed artillery batteries = 6
Mmber of simulation runs = 100

2

Average nmunber3PMissions 30,770

Average munberTowedMizzions 18.220

Average munberdrtilleryREoundsFired 669, 200

Average numberCounterBatteryMizsions 18.270

Average numberCallFireMissions 101.730

Average nunberERGMFired 451.230

Average nunberLAZMLaunched Z2a5.820

Average number3PHunsDestroyed 17.380

Average numberTowedbunzsDestroved 19.650

Average nmunber3PEatteriesDestroyved 1.440 —
| Average numberTowedBatteriesDestroyed 2. 160 é
Cpen afile

Figure 16. Firing Policy MMGGGG

This firing policy on average rexulted in the atillery batteries
fiing of gpproximatedy 669 atillery rounds per smulaion run.
Therefore, the sdected MOE showed an improvement when the
ships used sx weapons ingead of eght wegpons as in the
MMMGGGGG firing policy.

55

E%%Number of Enemy Artillery Rounds Fired: Firing Policy MMGGGG =] B3

Count

LT

0.4 0.6 0.8 1

Walue 3

*10

Figure 17. Histogram for MMGGGG Firing Policy

Repeated for 100 smulation runs, the MMGGGG firing policy resulted in an average
of 669.20 artillery rounds fired by the artillery batteries during each battle.

The improvement in the MOE usng fewer wegpons may be attributable to the
fact that firing more wegpons each misson will force the surfface combatants to depart
ther gations earlier and more often to take on more ammunition. This is a likedy causd
factor because the seventeerrhour scenario specifies an offgation time of four hours,
during which time the replenishing ship is unavalable for counterbattery and cdl fire
missons.

The next section presents a brief synopds of prdiminary andyss using different

ERGM dispense diameters.

E. VARYING ERGM DISPENSE DIAMETER

The next question addressed in the study was whether an optimal ERGM dispense
diangter exisged for the given mix of atillery baiteries in the scenario. In this andyss
the MMMGGGGG and MMGGGG firing policies were used once again. For each set of
100 runs implementing one of the two specified firing policies, the ERGM dispense
diameter was varied from 20 to 100 m in increments of 20 m (runs using a 60 m dispense
diameter were completed for the previous analyss). Figure 18 shows the results of the

ten sats of runs.

Varying ERGM Dispense Diameter

740+

Mean # Artillery 700-
Rounds Fired

660

Mwm,
20 MGGGgg

40

60 80

Dispense Diameter (m)

MMG
100 GG Firing Policy

Figure 18. Effect of Varying ERGM Dispense Diameter

The plot shows that for this particular scenario an ERGM dispense diameter of 80 m
on average resulted in the best results foo MMGGGG and MMMGGGGG firing
policies. That is, the enemy atillery batteries on average fired fewer rounds when the
surface combatants used an ERGM dispense diameter of 80 m.

57

This andyss reveded that, despite higher associated PK vaues, smal dispense
diameters produced unfavorable results against dispersed mobile targets. Both a 60 m
and 80 m ERGM dispense diameter resulted in marked improvements in the MOE, with
the latter diameter fairing dightly better. A 100 m dispense diameter, dthough providing
a larger lethd area, tended to be less effective due to smaller associsted PK values.
Different firing policy implementations yidlded smilar results.

This type of analyss could be extended easly to incorporate different mixes of
SPA and towed atillery batteries or to include sengtivity andyss usng varying beattery
characterigics. Clearly, the anadyds conducted in this theds is only prdiminary and
further andyss with more detalled models usng “red” daa is required. However, the
andydss reveded some useful indghts and emphasized the need for further modd

development and research.

IV. CONCLUSIONSAND RECOMMENDATIONS

A. THE NEED FOR ANALYSIS

This thess has demondrated the need for continued andysis in the area of tecticd
employment of advanced NSFS weapons. While the development of such sophisticated
wegpons as ERGM and LASM has proceeded with the momentum of adequate funding,
weagpons systems integration and tacticd consderations remain a the conceptua stages.
Compared to the rdatively low cost of today’s 5 inch rounds, these advanced wegpons
will be quite codly. Therefore, efficient utilization of these wegpons in support of NSFS
is an important issue. Moreover, the emergence of more cgpable, more mobile enemy
weapons systems demands that these NSFS weapons be optimaly employed. The Nava
Surface Fire Support Smulation (NSFSSim) mode has yidded some useful ingghts into
the question of NSFS gun and missle employment againg mobile targets, but further

andyss usng more complex modelsis required.

B. DEVELOPMENT OF NSFSSIM

Some studies addressing NSFS issues have used successfully a consortium of
combat modds to capture the complexities of the Joint land battle. However, due to the
rigid desgn of these smulation modds magor modification to exiding code generdly is
required to enable the models to work together. This thess pursues a one modd
goproach, cregting a new dmulation modd (NSFSSm) that features subgtantiad

flexibility such that it can operate on any hardware platform, can be extended eesly to

59

provide greater resolution, and can be modified readily for future gpplications. NSFSSm
is an andyss tool that dlows the user to make changes to input parameters and run
gmulations without the burden of rewriting and recompiling any source code. In its
present form, NSFSSm provides methods for andyzing the effectiveness of different

firing sequences as well as the effectiveness of various ERGM dispense diameters.

C. RECOMMENDATIONS FOR FURTHER ANALYS'S

Prdiminay andyss usng NSFSSm redffirms the importance of the
responsveness, range, and lethdity of NSFS wegpons employed againg mobile, short
dwdl time targets In paticular, launching LASM ealy in a firing sequence is on
average a better policy than launching the missles after the ERGM rounds are fired.
Additiondly, setting the ERGM dispense diameter a 60 m or 80 m generdly produces
the best results againg digpersed, mobile units To be sure, these preiminary findings
should be tested against other scenarios. In its present form, NSFSSm could be used to
invedigate the effectiveness of MRSl tactics agang atillery batteries By setting the
firing duration to 0.0 and using the same speed for dl of the wegpons, dl of the weapons
fired for a particular NSFS mission would impact at the same time.

Further andyss with a more complex verson of NSFSSm and “red” data is
necessay to gan more indghts into the problem of NSFS gun/missile firing policy.
NSFSSm should be extended to use entities that exhibit more redisic movement.
Sensors could be modeled as actud entities. Enemy atillery batteries could be modded

with the capability of utilizing countermeasures and decoy tactics Furthermore, the

chdlenges facing surface combatants in the littords should be modded. Some of these

chalengesinclude land-based aircraft, land and sea-based missile systlems, and mines,

61

THISPAGE INTENTIONALLY LEFT BLANK

62

APPENDIX A: DATA STRUCTURESIN NSFSSIM

All of the input data in NSFSSim is stored within “ini” files in the data directory.
The dructure of an “ini” file lends itsdf to the credtion of a data base in the form of a
Hashtable of Hashtables, or a Hasht abl e2 ingance The file “sgtup.ini” used in
NSFSSm shows the typica sructure of an “ini” file:

[NSFSShi p]

firingPolicy = nmgggg

st andCOf f Range = 130.0
yCoordCOf f set = 250.0
targetStal eTime = 0.0833
ammoOnl oadTinme = 3.0

[Number Entiti es]
nsfssim CA7 = 1
nsfssimDD21 = 1
nsfssim DDG51 = 2
nsfssim SPArtillery
nsfssim TowedArtille

=6
ry =6

| ower Left X 0.0
| ower LeftY 0.0
upper Ri ght X = 750.0
upperRi ghtY = 480.0

[AreaCoor di nat es]

[Unr epCoor di nat es]
xCoord 418. 0
yCoor d 250. 0

[Si nul ati on]
nunmber Of Runs = 100
stopTinme = 17.0

st opWwhenTgt sDead = fal se
singleStep = fal se

ver bose = fal se

[H st ogram

| eft Val ue = 400.0
ri ghtvalue = 1000.0
nunmberOf Cel I's = 15

As illugrated by “setup.ini,” a block of related data is specified by []. Within
each block, there exiss any number of key-vaue pars (eg. firingPolicy = mmgggg).
The Hasht abl e2 class converts an “ini” file into a Hashtable of Hashtables so that one
can access the vadue of a particular key-vadue par by specifying the block and the key.
NSFSSm provides a GUI that dlows the user to modify and save the values within five

“in” files Hasht abl e2 and the dlassesthat build this GUI are listed here:

/! The Hasht abl e2 cl ass

package nsfssim

i mport java.util.*;
i mport java.io.*;
i nport java. net.*;

public class Hashtabl e2 extends Properties {

// constructors
public Hashtabl e2() {

super () ;
}

publ i c Hasht abl e2(Properties prop) {
super (prop);

}

publ i ¢ Hashtabl e2(URL url) {
super () ;
this.load(url);

}

public Hashtable2(File file) {
super();
this.load(file);

}

/1 instance methods
public void put(Object firstKey, Object secondKey, Object value) {
Hasht abl e val ues;
if (this.containsKey(firstKey)) {
val ues = (Hashtable) this.get(firstKey);
}

el se {
val ues = new Hasht abl e(10);
this.put(firstKey, values);

64

}

val ues. put (secondKey, val ue);

}

public Object get(CObject firstKey, Object secondKey) {
Hasht abl e val ues;
bj ect returnVal ue = null
if (this.containsKey(firstKey)) {
val ues = (Hashtable) this.get(firstKey);
returnVal ue = val ues. get (secondKey);

}

return returnVal ue;

}

public void |load(String fileNanme) {
File file = new File(fil eNane);
if (file.exists()) {
this.load(file);

}
el se {
t hrow new ||| egal Argunment Exception("File " + fileName + " not
found.");
}

}

public void |load(URL file) {
this.load(new File(file.getFile()));
}

public void load(File file) {
int I'ineNumber = O;
try {
Fi | eReader instream = new Fil eReader(file);
Buf f eredReader input = new BufferedReader (instream;

StringTokeni zer tokens = null
Properties currentBl ock = new Properties();
String currentBl ockName = ;
for (String nextLn = input.readLine(); nextLn != null; nextLn
= input.readLine()) {
I i neNumber ++;
if (nextLn.startsWth(";") || nextLn.startsWth("#")) { }
else if (nextLn.startsWth("[") && nextLn.endsWth("]")) {
t okens = new StringTokeni zer(nextLn, "[]");
i f (tokens.countTokens() == 1) {
current Bl ockName = tokens. next Token();
current Bl ock = new Properties();
thi s. put (current Bl ockNanme, current Bl ock);

}
el se {
t hrow new Runti neException(" on line " + |ineNunber
+ ":\n" + nextLn + "[# tokens = " +
t okens. count Tokens() + "]1");
}
}
el se {

tokens = new StringTokeni zer (nextLn, "=");

swi tch (tokens.count Tokens()) {
case O:
br eak;
case 1:
current Bl ock. put (t okens. next Token().trinm(), "");
br eak;
case 2:
current Bl ock. put (t okens. next Token().trim),
t okens. next Token().trin());
br eak;
defaul t:
t hrow new Runti neException (
"I mproper format in" + file + " online " +
i neNunmber +":\n" + nextLn + "[# tokens = " +
t okens. count Tokens() + "]1");

}
i nput.cl ose();

catch (Fil eNot FoundException e) {Systemerr.println(e);
e.printStackTrace(Systemerr);}

catch (1 Oexception e) {Systemerr.println(e);
e.printStackTrace(Systemerr);}

}

public Object put(Cbject key, Object value) {
if (value instanceof Map) ({
return super. put(key, value);

}
el se {
t hrow new ||| egal Argurment Excepti on("Hasht abl e2 can only accept
Maps as val ues.");
}

/I The INIFileEditor class

package nsfssim

/**

* This class edits an IN file.

**/

i nport java.io.*;
i mport java.util.~*;
i mport javax.sw ng. *;

public class INFileEditor {

11

11

/1

i nstance vari abl e
private File file;
private JFranme frane;

constructor
public INIFileEditor(File fileNane, JFrane f) {

}

file = fil eNane;
frame = f;
this.editFile(file);

i nstance net hod
public void editFile(File file) {

I Nl Fi | eReader reader = new I Nl Fil eReader(file);

JTextField[] fields = reader. getVal ueFi el ds();

JPanel Di al og d = new JPanel Di al og(frane, file.toString(), true,
reader, fields, null);

d. show();

if (d.getValue() !'= null) {
StringTokeni zer tokens = new StringTokeni zer (d. getVal ue());
i f (tokens.countTokens() == ((String[])

reader . get Val ueNanes()) .l ength) {
String[] values = new String[tokens. count Tokens()];

int k = 0;

whil e (tokens. hasMoreTokens()) {
val ues[k] = tokens. next Token().trim();
k++;

new I NIFil eWiter(reader.getFil eNane(),
reader. get TabNanes(), reader. get SubCounter(),
reader . get Val ueNanes(), val ues);
}
}
d. di spose();
return;

// The I N Fil eReader cl ass

package nsfssim

import sinkit.util.*;

i nport

java.io.*;

i mport java.util.~*;
i mport javax.sw ng. *;
i mport java.awt.*;

i mport java.awt.event.*;

public class I N FileReader extends JPanel {

67

private INI FileProperties filelN
private String fil eNane;

private JTabbedPane pane;

private JPanel [] tabs;

private String[] tabNanes;
private String[] val ueNanes;
private String[] val ues;

private JTextField[] val ueFi el ds;
private int counter

private Integer[] subCounter
private int subTot al

private int val ueCounter

/**

* Creates an IN Fil eReader that sorts the keys of the IN file
into tabbed Panes and JLabels and allows the values to be
* changed.
**/
public INIFil eReader(File file) {
counter = 0O;
subTotal = 0;
val ueCounter = 0O;
pane = new JTabbedPane();
Properties prop = null
fileName = file.toString();
filelNl = new IN FileProperties();
filel Nl .load(fileNamne);

tabNames = new String[filelN.size()];
tabs = new JPanel [filelNl.size()];
subCounter = new Integer[filelNl.size()];
for (Enuneration e = filel N .keys(); e.hasMreEl ements();) {
bj ect key = e.nextEl enent();
t abNames[counter] = key.toString().trim();
tabs[counter] = new JPanel ();
try {
prop = (Properties) filelN.get(key);
subCount er[counter] = new | nteger(prop.size());
subTot al += subCounter[counter].intValue();
}
catch (Cl assCast Exception ex) {Systemerr.println(ex);}
catch (Null Poi nterException ex) {Systemerr.println(ex);}
count er ++;
}
counter = 0;
val ueNanes = new String[subTotal];
val ues = new String[subTotal];
val ueFi el ds = new JText Fi el d[subTot al] ;
for (Enunmeration e = filel N .keys(); e.hasMreEl ements();) {
bj ect key = e.nextEl enent();
tabs[counter]. set Layout (new Gri dBagLayout ());
Gri dBagConstraints ¢ = new GidBagConstraints();
c.insets = new Insets(3, 3, 3, 3);
c.gridx Gri dBagConst rai nts. RELATI VE
c.gridy 0;

68

try {
prop = (Properties) filelN.get(key);
int i = 0;
for (Enumeration en = prop.keys(); en.hasMreEl ements();) {
Obj ect key2 = en. nextEl enent();

val ueNanes[val ueCounter] = key2.toString().trim);

val ues[val ueCounter] = new
String(prop.get(key2).toString().trim));
val ueFi el ds[val ueCounter] = new JText Fi el d(22);

val ueFi el ds[val ueCount er] . set For egr ound(Col or . bl ack) ;
val ueFi el ds[val ueCount er] . set Text (val ues[val ueCounter]);

if (i '=0 & i% == 0) {
C.gridy++;
JLabel |abel = new JLabel (val ueNanes[val ueCounter]);

| abel . set For egr ound(Col or. bl ue);
tabs[counter].add(Il abel, c);
tabs[count er]. add(val ueFi el ds[val ueCounter], c);
i ++;
if (i> subCounter[counter].intValue()){
i =0;
}

val ueCount er ++;

}
pane. addTab(t abNanes[counter], tabs[counter]);
count er ++;

}
catch (Cl assCast Exception ex) {Systemerr.println(ex);}
catch (Nul | Poi nter Exception ex) {Systemerr.println(ex);}

}
t hi s. add(pane);

}

public String getFileName() {return fil eNane;}

public String[] getTabNanmes() {return tabNanmes;}

public String[] getVal ueNanes() {return val ueNanes;}

public String[] getValues() {return values;}

public Integer[] getSubCounter() {return subCounter;}

public JTextField[] getValueFields() { return val ueFields; }

/! The INIFileWiter class

package nsfssim

/**

* This class wites an INl file.

**/

i mport java.io.*;

i mport java.util.*;

i nport javax.sw ng. *;

public class INIFileWiter {

69

/1 instance vari abl es
private String fil eNane;
private Properties hash;

/1 constructors
public INIFileWiter(String file, String[] bracket, |nteger][]
keyNuns, String[] keys, String[] values) {
hash = new Properties();
Properti es hashz;
fileName = file;
String null String = null
int k = 0;
for (int i =0; i < bracket.length; i++) {
hash2 = new Properties();
for (int j = 0; j < keyNuns[i].intValue(); j++) {
hash2. put (keys[k], values[k]);
k++;
}
hash. put (bracket[i], hash2);
}
this.checkFile();

}

public INIFileWiter(String file, Properties prop) {
hash = (Properties) prop.clone();
fileNane = file;
this.checkFile();

}

/1 instance methods
public void checkFile() {
File file = new File(fil eNane);
if (file.exists()) {
JFrame f = new JFrame("Overwrite?");
int result = JOptionPane. showConfirnDi al og(f,
new String("Save " + file.toString() + "?"), "Save File",
JOpt i onPane. YES_NO OPTI ON) ;
if (result == JOptionPane. YES_OPTI ON) {
f.di spose();
this. makeFile();
t hi s. showSavedMessage() ;

}
el se {

f.di spose();
}

}

public void makeFile() {
StringBuffer buf = new StringBuffer();
try {
PrintWiter printQut = new PrintWiter(new
FileWiter(fileNane));
Properties prop = null
for (Enuneration e = hash. keys(); e.hasMreElenents();) {
Obj ect key = e.nextEl enent();

70

buf . append('\n");

buf . append('[');

buf . append(key. toString()
buf . append(']');

buf . append('\n');

try {

)

prop = (Properties) hash. get(key);
for (Enumeration f = prop. keys(); f.hasMreEl enents();)

{

bj ect key2 = f.nextEl ement();
bj ect val ue2 = prop. get (key2);
buf . append(key2.toString());

buf . append("” = ");

if (value2 !'= null)
if (value2.toStr
el se {

{
ing().equals("null")) {}

buf . append(val ue2.toString());

}
}
buf . append('\n");
}

catch (Cl assCast Exception

ex)

{buf . append(hash. get (key).toString());}
catch (Null Poi nterException ex) {}

}
printQut. print(buf);
printQut.flush();
printQut.close();

}
catch (1 Oexception e) { System

}

public void showSavedMessage() {
JFrame f = new JFrane(" Saved")
JOpti onPane. showvessageDi al og(f
' saved."), "Save Conplete",
f.di spose();
}

public String getName() {
return fil eName;
}

/1 The JPanel Di al og cl ass
package nsfssim
import sinkit.util.*;

i mport java.util.*;
i mport javax.sw ng. *;

71

out.printlin(e);}

, hew String("File " + fileNane +
JOpt i onPane. | NFORMATI ON_MESSAGE) ;

i mport java.awt.*;
i mport java.awt.event.*;
i port java. beans. *;

public class JPanel Di al og extends JDi al og i npl enents
PropertyChangelLi st ener {

protected JOpti onPane opti onPane;

private static String[] options = { "Cancel" , "OK"};
private static String okString = "OK"

private JTextField[] fields;

public JPanel Di al og(Franme f, String title, bool ean nodal, JPane
panel , JTextField[]
textFields, String words) {
super (f, title, nodal);
fields = new JTextFiel d[textFields.|ength];
for (int i=0; i < textFields.length; i++) {
fields[i] = textFields[i];
}

Obj ect[] nessage = new Object[] { panel, words };
opti onPane = new JOpti onPane(

nmessage, JOptionPane. PLAI N_MESSAGE,

JOpt i onPane. OK_CANCEL_OPTI ON

)
opti onPane. addPr opert yChangelLi st ener (thi s);

t hi s. get Cont ent Pane(). add(opti onPane, BorderLayout. CENTER)
t hi s. pack();

this.setLocationRel ativeTo(f);

thi s. set Resi zabl e(fal se);

}

/1 This nethod gets the result of the dial og
public String getValue() {

String sel ectedVal ue = null

StringBuffer returnValue = new StringBuffer();

i f (optionPane. getValue()!= JOptionPane. UNI NI TI ALI ZED VALUE) {
int result = ((Integer) optionPane.getValue()).intValue();
if (result == JOptionPane. OK_OPTI ON) {

for (int i =0; i < fields.length; i++) {
String text = fields[i].getText().trim).replace(' ',
)
if (text.equals("")) {
returnVal ue. append("nul | ");

}

el se {
returnVal ue. append(text);

}

returnVal ue. append(" ");

sel ectedVal ue = returnValue.toString().trim);

}
}

return sel ect edVval ue;

72

/1 PropertyChangelLi stener for JOptionPane
public void propertyChange(PropertyChangeEvent evt) {
if (evt.getPropertyNane().equal s(JOpti onPane. VALUE_PROPERTY)) {
t hi s. di spose();
}

73

THISPAGE INTENTIONALLY LEFT BLANK

74

APPENDIX B: CREATING ANIMATION IN NSFSSIM

NSFSSm is gructured with a Modd-View-Controller (MVC) design. That is, a
nonvisud smulaion modd (utilizing Smkit components and dasses written in Java)
operates independently of the visud view (eg, NSFSSm's animaion mode); a
controller (in the form of keyboard and mouse events agpplied to the GUI) serves to
synchronize the modd with the view. The modd and the view do not have to be aware
of the existence of the other to function properly.

When one clicks on NSFSSim's main window to enable the animation mode, two
things occur: an animation window opens and a “Ping’ thread is endbled. When this
thread is endbled, a “Ping” event is placed on the event ligt a regular intervas (the user
can modify the interva between the “Ping” events). When each “Ping” event occurs, the
Movers in the smulation mode are painted in the animation window. Two of the classes
written to creste the animation in NSFSSm are Pi ngThr ead and Ani mat i onFr ane,

which areliged here in ther entirety:

/[l The PingThread cl ass

package nsfssim
i mport sinkit.*;
i mport java.awt.event.*;

i mport javax.sw ng. *;
i mport java.lang.reflect.*;

*

/
<P> An extrenely sinple way to ani mate Sinkit prograns.

a Ping event occurs every deltaT utints of sinulated time, which
correspond roughly to millisPerSimlime mlliseconds of real tine
(your mleage may vary). Any listeners to Ping nay do as they
wi sh, such as updating the position of units drawn on a screen.

* % kX X X X F

<P> This is perhaps an overly naive approach. Suggestions are
75

wel cone.

@ut hor Arnol d Buss

**/

public class PingThread extends SinEntityBase inplenments Runnable {

private doubl e deltaT, /1 Time between Pings events
private double nmillisPerSimime; // Real time per simulated tine
private bool ean pinging; /1 true if currently active

private | ong real Ti mneStep;
private |long startStep;

/1 constructors
publ i ¢ PingThread(double dt, double npst) {
this.setDeltaT(dt);
this.setMIlisPerSiminme(npst);

}

publ i c PingThread(double dt, double npst, bool ean pinging) {
this(dt, npst);
t hi s. set Pi ngi ng(pi ngi ng) ;

/**

* Simkit initialization -- if instance is created with
* <CODE>pi ngi ng</ CODE> set true, then create Thread and start it.
**/
public void doRun() {
if (this.isPinging()) {
this.startPinging();

Start pinging and wait forever (or until the Thread is stopped).
The <CODE>whi | e</ CODE> | oop appears necessary to keep the Thread
* fromtermnating by returning from <CODE>run() </ CODE>.

public void startPinging() {
new Thread(this).start();
}

public void run() {
this.setPinging(true);
wai t Del ay("Pi ng", 0.0);
startStep = SystemcurrentTimeM I 1is();

/**

* Stop and shut down the Event List.
**/
public void stopPinging() {
t hi s. set Pi ngi ng(false);
this.interruptAll();

76

* The main point of the class is the Ping event, which actually does
* nothing in and of itself other than schedul e the next Ping event.

Note that the sleep time is the nunber of mlliseconds equival ent
* to deltaT, as specified by the user
**/

publi c synchronized void doPing() {

if (isPinging()) {
wai t Del ay("Pi ng", deltaT);

try {
Thread. sl eep((long) (deltaT * mllisPerSintine));

}
catch (InterruptedException e) {}
}
l ong now = SystemcurrentTimeM I 1is();

real TimeStep = now - startStep
startStep = now,
long offBy = real TineStep - (long) (deltaT * millisPerSintine);

}

public void pause() { Schedul e. pauseSi mul ation(); }
public void resune() { this.startPinging(); }

public void setDeltaT(double dt) {deltaT = dt;}

public void setMIlisPerSintime(double npst) {mllisPerSintinme =
npst ; }

public void setPinging(boolean p) {pinging = p;}

public double getDeltaT() {return deltaT;}
public double getMIlisPerSintinme() {return mllisPerSintine;}
publ i c bool ean isPinging() {return pinging;}

/1 The Ani mati onFrane cl ass

package nsfssim

/**

* <P> This class paints Myvers when Ping events occur
* @uthor H.B. Le

**/

import sinkit.*;

i mport sinkit.snd. *;

i mport javax.sw ng. *;

i mport javax.sw ng. border.*;
i mport java.awt.*;

i mport java.awt.event.*;

i mport java.util.*;

i mport javax.sw ng.text.*;

public class AninmationFranme extends JFrane inplenents
77

Si mEvent Li st ener {

private static String DEFAULT_TI TLE
private static | con BACKGROUND

static {
DEFAULT_TI TLE = "NSFSSi m Ani mati on";
BACKGROUND = new | magel con(Ani mati onFrane. cl ass.
get Resource("icons/geo.gif").getFile());

}
[l instance variabl es
private |lcon area; /'l The background i mage
private Hashtabl e2 icons; /!l Stores the icon file nanes
private Vector entities; /1 This instance's novers
private | mge offscreen; /1 For doubl e-buffering the display

private JPanel sandbox;
private Graphics dbuf;
private PingThread pt; /1 This instance’s PingThread

/1 constructors
public Ani mati onFrame(Pi ngThread ping) {
t hi s(DEFAULT_TI TLE, ping);
}

public AnimationFrane(String title, PingThread ping) {
super(title);
pt = ping;
this.init();
area = BACKGROUND
}

public AnimationFrane(int x, int y, int w, int h, PingThread ping) {
this(x, y, w, h, ping, BACKGROUND);
this.setBounds(x, y, w, h);
pt = ping;
this.init();
}

public AnimationFrame(int x, int y, int w, int h, PingThread ping,
I con geo) {
super (DEFAULT_TI TLE) ;
this.setBounds(x, y, w, h);

pt = ping;
area = (geo;
this.init();

}

public AnimationFrame(String title, int x, int y, int w, int h,
Pi ngThread ping, |con geo, Hashtabl e2 thelcons) {
super(title);
this.setBounds(x, y, w, h);

pt = ping;
area = (geo;
this.init();

this.setlcons(thelcons);
78

}

/1 instance mnethods
public void init() {
sandbox = new JPanel ();
sandbox. set Backgr ound(Col or. whi te);
t hi s. get Cont ent Pane() . add(sandbox, BorderLayout. CENTER);
pt . addSi nEvent Li st ener (t hi s);
t hi s. get Cont ent Pane(). add(new Pi ngPanel (pt, this),
Bor der Layout . SOUTH) ;
entities = new Vector();

/**

* Redraw the screen based on the current position of the Myvers using
* doubl e-buffering.
**/
protected void updateEntities() {
Graphics g = sandbox. get Graphi cs();
if (offscreen == null) {
of f screen = sandbox. cr eat el mage(sandbox. get Si ze() . wi dt h,
sandbox. get Si ze() . hei ght) ;

}
dbuf = of fscreen. get Graphics();
dbuf.fill Rect (0, 0, getContentPane().getSize().w dth,
get Cont ent Pane() . get Si ze() . hei ght);

ar ea. pai nt I con(get Cont ent Pane(), dbuf, 0, 0);
for (Enuneration e = entities.elements(); e.hasMreEl ements();) {

Mover next Mover = (Mover) e.nextEl ement();

i f (nextMover instanceof NSFSShip) {

t hi s. pai nt Shi pGraphi c(next Mover) ;
}

el se if (nextMover instanceof ArtilleryBattery &&
((ArtilleryBattery) nextMver).isAlive()) {
t hi s. pai nt BatteryG aphi c(next Mover) ;

el se if (nextMover instanceof ArtilleryBattery &&
F'((ArtilleryBattery) nextMver).isAlive()) { }

el se {
int x = (int) nextMover.getCurrentLocation().getXCoord();
int y = (int) nextMover.getCurrentLocation().getYCoord();
thi s. pai nt Graphi c(this.getlcon(nextMver, "default"), X,
y);
}
g. drawl mage(of fscreen, 0, 0, this);
g. di spose();
dbuf . di spose();
}
/**

* Paints the ship using one of several possible icons.
* @aramship = the ship to be painted
**/
public voi d pai nt Shi pGraphi c(Mver ship) {
int x = (int) ship.getCurrentlLocation().getXCoord();

7

int y = (int) ship.getCurrentlLocation().getYCoord();
i f (((NSFSShip) ship).isMving()) {
i f (((NSFSShip) ship).isComenci ngOnl oadSequence()) {
this. pai nt Gaphic(this.getlcon(ship, "stbdUW), x, y);

}
el se {

thi s. pai nt Gaphic(this.getlcon(ship, "portUW), x, y);
}

}
else if (((NSFSShip) ship).isComenci ngOnl oadSequence()) {
thi s. pai nt Graphic(this.getlcon(ship, "stbd"), x, y);

}
el se {
this. pai nt Gaphic(this.getlcon(ship, "port"), X, y);
}
}
/**

* Paints the battery using one of several possible icons.
* @arambattery = the battery to be painted

**/

public void paintBatteryG aphi c(Myver battery) {
int x = (int) battery.getCurrentLocation().getXCoord();
int y = (int) battery.getCurrentLocation().getYCoord();
if ('((ArtilleryBattery) battery).isFiring()) {
if (((ArtilleryBattery) battery).isAtFull Strength()) {
this.pai ntGraphic(this.getlcon(battery, "fullStrength"), x,

y);

}
else if (((ArtilleryBattery) battery).get Current Nunmber Guns() >

1) {
this.pai nt Graphic(this.getlcon(battery, "weak"), X, y);

}
el se {
this.pai ntGraphic(this.getlcon(battery, "neardead"), Xx, y);
}
}
el se {
t hi s. pai nt Gaphic(this.getlcon(battery, "firing"), x, y);
}

}

public void paintGaphic(lcon icon, int x, int y) {
i con. pai ntlcon(get Content Pane(), dbuf, x, y);
}

/**

* Adds a new nover.
* @aramm = the new Mover added.
**/
public void addMover (Mover m) {
if (lentities.contains(m){
entities.addEl enment(m ;
}

/**

* Renobves a nover.
* @aramm = the renoved Mover.
**/
public void renmnoveMover (Mwver m {
if (entities.contains(m) {
entities.renoveEl enent(m;
}

/**
* Renoves all novers.
**/
public void removeMovers() {
entities.clear();
}

/**
* Gets a copy of novers in a thread-safe manner.
**/
public Vector getMvers() {
Vector copy = null;
synchroni zed(entities) {
copy = (Vector) entities.clone();

return copy;

/**
* Here's where the Ping event is heard and entities are updated.
**/
public void processSi nEvent (Si nEvent e) {
if (e.getEventNanme().equal s("Ping")) {
this.updateEntities();
}

}

public void setlcons(Hashtabl e2 thelcons) { icons = thelcons; }

public Icon getlcon(Mver nover, String iconKey) {
String noverCl ass = nover. get Cl ass(). get Name();
String iconFile = icons.get(noverClass, iconKey).toString();
return new
I magel con(Ani mat i onFr ame. cl ass. get Resour ce(i conFile).
getFile());
}

publ i c JPanel getSandbox() { return sandbox; }
public PingThread getPingThread() { return pt; }

81

THISPAGE INTENTIONALLY LEFT BLANK

82

LIST OF REFERENCES

Allen, D.J, et. d., Naval Qurface Fire Support Road Map Sudy, Phase 1 Report,
Johns Hopkins Universty Applied Physics Laboratory Report, VS-96-005, October
1996.

Bradley, Gordon H. and Arnold H. Buss, An Architecture for Dynamic Planning
Systems Using Loosely Coupled Components, Proposal for Reimbursable Research,
Operations Department, Naval Postgraduate School, 1997.

Chien, Stanfidd L., Optimizing Ordnance Loadout of Navy Surface Combatants
Operating in Support of Navd Surface Fire Support, Master’s Thess, Operations
Research Department, Naval Postgraduate School, 1997.

Foss, Christopher F., Jane’'s Armour and Artillery, Nineteenth Edition 1998-1999,
Alexandria: Jan€' s Information Group, Inc., 1998.

Geary, David M., Graphic Java 2, Volume |1: Swing, Pdo Alto: Sun Microsystems,
Inc., 1999.

Holzer, Robert, “ERGM Complexity Prompts Independent Review Panel,” Defense
News, August 2, 1999,

Horsmann, Cay S. and Gary Corndl, Core Java 1.1, Volume 1 - Fundamentals,
Mountain View: Sun Microsystems, Inc., 1997.

Law, Aveill M. and David W. Kdton, Smulation Modeling and Analysis, New
York: McGraw-Hill, Inc., 1991.

Office of the Charman of the Joint Chiefs of Staff, Department of Defense
Dictionary of Military and Associated Terms Joint Pub :02, March 23, 1994, as
amended through April 6, 1999.

10. Program Executive Officer, Cruise Missiles Project and Unmanned Aerid Vehicles

11.

12.

13.

Joint Project, Tomahawk Weapon System Baseline 1V Phase 1. Tactical Tomahawk
Concept of Operations Document, JCM-2237 (Draft), September 24, 1998.

Schweizer, Roman, “LASM-NTACMS Dud Heats Up in Pentagon, Issue Could
Head to JROC,” Inside the Navy, March 22, 1999.

Schweizer, Roman, “Navy Picks Land Attack Standard Over Army Missile to Ouitfit
Aegis Ships’, Inside the Navy, May 4, 1998.

Stork, Kirk, Sensorsin Object Oriented Discrete Event Smulation, Master’s Thes's,
Operations Research Department, Nava Postgraduate School, 1996.
83

14.

15.

16.

17.

Townsend, James R., Defense of Nava Task Forces From Anti-Ship Missile Attack,
Master's Thes's, Operations Research Department, Naval Postgraduate School, 1999.

Zimm, A.D., et. d., Land Attack Warfare Technical Studies, Johns Hopkins
University Applied Physics Laboratory Report, WR-98-013, February 1998.

Zimm, A.D., Advanced Gun Study: Effectiveness Anadyses TAFSM, ELAN, and
ARTQUIK Modeling, Johns Hopkins University Applied Physics Laboratory Report,
JWR-99-001, Revison 1, February 17, 1999.

Zimm, A.D., Advanced Gun Study: Supplementa Andyss: Land Attack
Effectiveness, Johns Hopkins University Applied Physics Laboratory Report, WR-
99-007, May 16, 1999.

INITIAL DISTRIBUTION LIST

. Defense Technical INfOrmMation CONTETeeeeeeeeeeeeeeeeeeeeneeenennnennnenennnnnnnnnnnennnnnnnnnnns

8725 John J. Kingman Rd., STE 0944
Fort Belvair, Virginia22060-6218

. DUAIEY KNOX LIDI@AIY....cciicie ettt sne e s e e
Nava Postgraduate School

411 Dyer Rd.

Monterey, Caifornia 93943-5101

. M. SEEPNEN M. BIEIMEY ... e
Joint Warfare Andysis Department, JHU/APL

Johns Hopkins Rd.

Laurd, Maryland 20723-6099

Y LN o oo T == <Y R R

Joint Warfare Andlysis Department, JHU/APL
Johns Hopkins Rd.
Laurd, Maryland 20723-6099

e VIE. RICNAID L. IV T e nsmnmennemnnnnn

Joint Warfare Andysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

. M EAWard A. SMYTN.....o.eeee e
Joint Warfare Andys's Department, JHU/APL

Johns Hopkins Rd.

Laurd, Maryland 20723-6099

o IMIE. ALBIN D ZIMNIM e mnemnnnnnnmnnnnnnnnnn

Joint Warfare Andysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

. Professor Arnold H. BUSS, COOE OR/BUL.........oo oo a e

Department of Operations Research
Naval Postgraduate School
Monterey, Caifornia 93943-5000

. LCDR Douglas J. MacKinnon, Code OR/Mg........ccceiirrieineneseenieeee e
Department of Operations Research

Naval Postgraduate School

Monterey, Caifornia 93943-5000

1O, LT HUNG B. LBttt e et nnne s
2565Archdale Dr.
Virginia Beach, Virginia 23456-6881

